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Abstract

We show how to use credit registry microdata to estimate the cost of capital, and

how this affects capital allocation efficiency in the United States. Our measure of the

cost of capital accounts for the interest rate, expected default probability, recovery

rates, and, for floating-rate loans, the expectation of future rates. We find that, on

average, the lender’s cost of capital closely tracks the five-year Treasury rate, with a

spread of 1.5%. Misallocation depends on dispersion in the social cost of capital, which

equals the lender’s cost of capital plus an agency friction. We find that in normal

periods, the implied misallocation is small, resulting in an output loss of only 0.5%.

However, the dispersion in the cost of capital rose dramatically during the COVID-

19 pandemic, driven by agency frictions. By integrating microdata with a corporate

finance framework, this study highlights the resilience of U.S. credit markets under

typical conditions, and underscores the inefficiencies that can arise during a crisis.
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1 Introduction

How much does it cost a firm to obtain capital? Economic models often simplify by

assuming that all firms can borrow in a competitive market at a common rate. In reality,

however, the cost of capital varies significantly across firms. This variation stems not only

from differences in stated interest rates but also from firm-specific factors such as default

probabilities, loan terms, and lender costs. Such heterogeneity in the cost of capital has

profound implications: it can distort the allocation of capital across firms, leading to inef-

ficiencies in economic output. Understanding these inefficiencies is critical for policymakers

and researchers seeking to design effective financial and economic policies.

This paper makes two key contributions to the literature. First, we develop a novel

methodology that leverages a corporate finance model and uses credit registry microdata

to measure the dispersion of the cost of capital. This methodology allows us to quantify

how these variations contribute to capital misallocation. Second, we apply this methodology

to U.S. credit registry data and uncover two primary insights. While the cost of capital is

heterogeneous across firms, the implied misallocation is surprisingly small, suggesting that

U.S. capital markets are close to allocative efficiency. However, this efficiency deteriorated

in the aftermath of the COVID-19 pandemic, driven primarily by agency frictions.

The methodology we develop offers several advantages. Unlike traditional approaches

that require solving structural models computationally, our approach uses sufficient statistics

derived directly from moments of the data. This not only simplifies implementation but also

provides more robust identification of the sources of misallocation without heavy reliance on

calibration assumptions.

Sections 2 and 3 detail the development of the dynamic corporate finance model that

forms the foundation of our analysis. This model captures firm-level borrowing, invest-

ment, and default decisions in the presence of productivity shocks. We then show how

these firm-level dynamics aggregate to influence the allocation of capital across the econ-

omy. Importantly, we derive a sufficient statistic for the cost of misallocation which relies
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on easy-to-compute moments of the micro data.

Section 4 describes how we map the model to U.S. credit registry data. By defining

the cost of capital as the internal rate of return that rationalizes the lender’s break-even

condition, we compute firm-specific costs of capital. We also develop a formula to measure

misallocation based on observed loan characteristics, such as interest rates, default proba-

bilities, and loss given default.

Finally, in Section 5, we present our empirical findings. Using data from more than sixty

thousand loans originated between 2014 and 2023, we show that the average cost of capital

closely tracks the five-year Treasury rate, with a spread of 1.5%. During normal times, the

implied output losses from capital misallocation are modest, around 0.5%. However, this

loss rose to 1.3% during the pandemic, largely driven by increases in agency frictions.

These findings highlight the resilience of U.S. credit markets in normal periods and un-

derscore the need for targeted interventions during crises to mitigate rising misallocation. By

integrating micro-level data with macroeconomic modeling, our approach provides a clearer

picture of how financial frictions affect the real economy and offers a foundation for future

research into the role of financial policies in addressing misallocation.

Literature Review Our paper contributes to the broader literature on measuring misal-

location. Following seminal papers by Restuccia and Rogerson (2008) and Hsieh and Klenow

(2009), there has been significant work attempting to measure misallocation in different set-

tings (see Hopenhayn (2014) and Restuccia and Rogerson (2017) for literature reviews). An

important challenge in this literature is measuring misallocation without imposing strong

assumptions on production functions. Haltiwanger et al. (2018) highlight that the standard

approach to measuring misallocation is only valid if all firms have the same Cobb-Douglas

production function, with the only allowable heterogeneity being a scalar productivity shifter.

Recent work has shown that these issues can be addressed by using (quasi-)experimental

variation to estimate marginal products directly (e.g., Carrillo et al. (2023); Hughes and

Majerovitz (2023)). However, because experimental variation is rare, these methods have
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only been applied in limited settings, namely the construction sector in Ecuador and the

microenterprise sector in Sri Lanka.

Our paper instead measures heterogeneity in the marginal product of capital from het-

erogeneity in the cost of capital. This allows us to measure misallocation for a much broader

set of firms while remaining robust to arbitrary production functions.

We also contribute to a literature that estimates heterogeneity across firms in interest

rates and/or the cost of capital. Banerjee and Duflo (2005) summarize early evidence for

substantial heterogeneity in interest rates across borrowers in developing countries, arguing

that this heterogeneity implies significant misallocation. Gilchrist et al. (2013) study bond

yields in the United States, finding heterogeneity that implies a modest loss of output due

to misallocation. Recent work by Gormsen and Huber (2023, 2024) analyzes transcripts of

firm earnings calls to extract information on the discount rates and cost of capital that firms

use. Cavalcanti et al. (2021) use credit registry data to study heterogeneity in interest rates

for borrowing firms in Brazil. They find substantial heterogeneity across firms and use a

dynamic structural model with financial frictions to infer the cost of capital. This paper also

builds on the findings of Faria-e-Castro et al. (2024), who analyze the dispersion in borrow-

ing rates for U.S. firms using a comprehensive database of loans and bonds. Their study

highlights significant heterogeneity in borrowing costs, even within firms, and demonstrates

the persistent impact of borrowing costs on firm-level investment and borrowing behaviors.

Relative to this previous literature, our paper makes two key methodological contribu-

tions. First, we provide a methodology to estimate a firm’s cost of capital from credit registry

data. This is not as simple as measuring the interest rate because the cost of capital depends

on the ex-ante repayment probability and expected losses given default. Second, we show

how to use moments of the distribution of the cost of capital to develop sufficient statis-

tics that allow us to measure the cost of misallocation non-parametrically in a dynamic,

stochastic model.
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2 Corporate Finance Model

This section outlines the core components of the model, which captures the interactions

between borrowers and lenders. We demonstrate how the model’s optimality conditions can

be derived and integrated with microdata on loan characteristics to estimate the lender’s

and firm’s cost of capital. These rates provide insights into the firm’s expected marginal

product of capital, a critical metric for assessing misallocation.

Time is discrete and indexed by t = 0, 1, . . .. The economy is populated by firms that

borrow and invest, and by lenders who finance those firms.

Borrowers. The borrowers in the model are firms operating in the nonfinancial sector.

These firms operate under limited liability and make decisions regarding production, invest-

ment, and borrowing. Output is generated using a production function f(k, z), where k

represents capital and z denotes productivity shocks.1 To sustain or expand their opera-

tions, firms invest in capital and issue long-term defaultable debt b. In the event of default,

lenders recover a fraction ϕ(k) of the firm’s existing assets k.

Lenders. Lenders finance firms, with each firm matched to a single lender. Upon matching,

the borrower-lender pair draws a realization of ρ, which represents the efficiency of the

match.2 We refer to ρ as the lender’s cost of capital. Loans are priced so that lenders break

even using ρ as their discount rate, taking into account firm-specific characteristics and risk

assessments.

Firm’s Problem. Firms determine their investment and borrowing strategies to maximize

their value, taking into account the possibility of future default. The value of repayment for

1Note that since z can be a vector, this accommodates (stochastic) fixed costs as well as rich heterogeneity
in the production function.

2This variable captures both lender- and borrower-specific factors that lie outside the scope of the model,
such as lender financing costs, risk appetite, or the dynamics of relationship lending. While we do not provide
a specific microfoundation for the heterogeneity in ρ, we focus on analyzing its implications.
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a firm is expressed as:

V (k, b, z) = max
k′,b′

π(k, b, z, k′, b′) + βE [max {V (k′, b′, z′), 0} |z] ,

where π(k, b, z, k′, b′) denotes the firm’s profit function, and β represents the discount factor.

The profit function captures the firm’s net return from production and financing decisions:

π(k, b, z, k′, b′) = f(k, z) + (1− δ)k − k′ − θb+Q(k′, b′, z)(b′ − (1− θ)b).

Here, f(k, z) represents the firm’s output as a function of capital k and productivity z,

(1 − δ)k accounts for the depreciated value of current capital, and k′ denotes new capital

investment. The term θb reflects repayment on existing debt, while Q(k′, b′, z) captures the

price of new debt, with b′ − (1− θ)b representing the net new borrowing.

Debt Pricing. Lenders are risk-neutral and price debt based on their cost of capital, ρ.

The price of debt Q(k′, b′, z) is determined as:

Q(k′, b′, z) =
E
[
P(k′, b′, z′) (θ + (1− θ)Q(k′′, b′′, z′)) + (1− P(k′, b′, z′)) ϕ(k′)

b′

∣∣∣ k′, b′, z
]

1 + ρ
,

where P(k′, b′, z′) is the probability of repayment in the next period, and ϕ(k′)/b′ is the

recovery rate in the event of default, per dollar lent.

The Firm’s Cost of Capital. We define the firm’s cost of capital, rfirmt , as the ra-

tio of the expected value of future repayments adjusted for the probability of repayment,

Et [Pt+1(θ + (1− θ)Qt+1)], relative to the current price of borrowing, Qt. The firm’s cost of

capital is the implicit interest rate that it pays on its debt. Formally, it is expressed as:

1 + rfirmt =
Et [Pt+1(θ + (1− θ)Qt+1)]

Qt

. (1)

This equation captures how the firm’s borrowing cost depends on repayment probabilities

and debt maturity. The firm’s cost of capital is one of the key components of the firm’s first

order condition with respect to capital. Intuitively, we show how to measure rfirm in the

data, and this will give us information about the marginal revenue product of capital.
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Proposition 1 characterizes the firm’s cost of capital. All proofs are in Appendix A.

Proposition 1 (Firm’s Cost of Capital). The firm’s cost of capital can be written as:

1 + rfirm =
1 + ρ

1 + Λ
, Λ :=

Et [(1− Pt+1)ϕ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]
.

The term Λ represents the wedge between the borrower’s cost of capital, rfirm, and the

lender’s cost of capital, ρ. This wedge arises due to lender recovery in the event of default.

When there is no recovery (ϕ = 0), the wedge disappears (Λ = 0), and the firm’s cost of

capital equals the lender’s cost of capital (rfirm = ρ). On the other hand, when the lender

can recover some value after default (ϕ > 0), the wedge becomes positive (Λ > 0), and the

firm’s cost of capital rfirm is lower than ρ. This reduction in perceived borrowing cost occurs

because the borrower only accounts for states where repayment occurs.

Marginal Revenue Product of Capital. The firm’s investment decision follows a stan-

dard first-order condition, which equates the firm’s cost of capital with its expected marginal

revenue product of capital. Formally, this condition is expressed as:3

(1 + rfirmt )Mt = Et[Pt+1(fk(kt+1, zt+1) + 1− δ)]. (2)

The left-hand-side of equation (2) represents the cost of raising more capital. This in-

cludes the firm’s cost of capital, rfirmt , adjusted by the price feedback multiplier, Mt, which

captures the effect of the firm’s borrowing and investment on the price of debt. The price

feedback multiplier Mt is given by:

Mt :=
1− γ × b′

k′
× ∂ logQ

∂ log k′

1 + γ × ∂ logQ
∂ log b′

, γ :=
b′ − (1− θ)b

b′
,

where γ measures the share of debt tomorrow that will be newly purchased. The numerator

of Mt reflects the feedback from changes in capital on the price of debt, while the denomi-

nator incorporates the feedback from changes in borrowing. Together, these terms provide

a comprehensive characterization of how price dynamics influence the firm’s cost of capital.

3This is a standard result after taking first order conditions and re-arranging terms appropriately.
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The right-hand-side of equation (2) represents the expected marginal revenue product

of capital. This term includes the marginal productivity of capital, fk(kt+1, zt+1), and the

depreciation factor, 1− δ, weighted by the probability of repayment, Pt+1.

3 Measuring Misallocation

When financial markets are efficient, all firms face the same cost of capital. However, in

the data we find that the cost of capital varies across firms. How does this inefficiency in

financial markets translate into an inefficiency in the real economy? We now consider the

aggregation of output and investment across firms in order to study the steady-state costs

of misallocation arising from dispersion in the cost of capital.

3.1 The Aggregate Economy and Welfare

We begin by setting up the aggregate environment in order to study both the decentral-

ized equilibrium and the planner’s problem. The firm’s problem will be the same as before.

There is an initial unit mass of firms, indexed by i, who exit over time. There is a continuum

of firms and no aggregate risk, so aggregates are not stochastic. Firms make undifferentiated

products and take the price of their output as given. There is some initial stock of capital

K0, and future capital depends on investment and depreciation through the standard law of

motion.

We introduce the notation ωit, which is equal to one if firm i is still operating at time t,

and zero if it has exited. Note that Et−1 [ωit] = Pit. Aggregate output is given by:

Yt =

∫ 1

0

ωit · f (kit, zit)︸ ︷︷ ︸
Output if Operates

− (1− ωit) · ((1− δ) kit − ϕ (kit))︸ ︷︷ ︸
Losses if Defaults

di (3)

Note that we have defined output, Yt, so that it includes both the firm’s output in the event

of production, f (kit, zit), and the losses from liquidation, (1− δ) kit − ϕ (kit), in the event of

default. This allows us to define aggregate investment simply:

It = Kt+1 − (1− δ)Kt (4)
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Finally, aggregate capital is given by:

Kt =

∫ 1

0

kitdi (5)

The planner wishes to maximize welfare, U , controlling each firm’s capital and exit

decision. However, the planner is subject to the same information constraints as the firm:

kit must be decided in period t− 1, without yet knowing the productivity or operating costs

that will prevail in that period. Exit decisions are made after zit is revealed, but with the

values for future periods still unknown.

There is a representative household that obtains utility from consumption: we abstract

from inequality to focus on productive efficiency. The household’s utility is additively sepa-

rable over time. Consumption is equal to aggregate output minus investment. Thus, welfare

in this economy is given by:

U =
∞∑
t=0

βt · u (Yt − It)

where β is the household’s discount rate and u is the utility it gets from consumption.

3.2 The Planner’s Problem

Let St
i := {zis}ts=0 denote the entire history of states, through period t.4 Define St :=

{St
i}i∈[0,1] as the collection of all firms’ histories. We can use this notation to set up the

appropriate constraints to the planner’s problem: the planner must set kit as a function of

4Note that the only shock in our model is zit, so this is the full history of states.
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St−1, and ωit as a function of St.5 The planner’s problem is:

U∗ = max
{{ki,t(St−1),ωi,t(St)}i∈[0,1]}

∞

t=1

∞∑
t=0

βt · u (Yt − It)

s.t.

ωi,t

(
St
)
∈ {0, 1} ∀i

ωi,t+1

(
St+1

)
≥ ωi,t

(
St
)
∀St ⊂ St+1,∀i

and Equations 3, 4, and 5 hold

where the inequality ωi,t+1 (S
t+1) ≥ ωi,t (S

t) notes that if the firm exits, it cannot subse-

quently re-enter. In period t = 0, all firms operate and capital is set exogenously.

We can rewrite the planner’s problem as a nested maximization problem, to isolate the

intensive-margin choice of capital, holding aggregate capital and the extensive margin fixed.

Note that It = Kt+1 − (1− δ)Kt, and so it depends only on aggregate capital (not the

allocation across firms). We can thus rewrite the planner’s problem in the following nested

form:

U∗ = max
{Kt,{ωi,t(St)}i∈[0,1]}

∞

t=1

∞∑
t=0

βt · u

((
max

{{ki,t(St−1)}i∈[0,1]}
∞

t=1

Yt

)
− It

)
with the same constraints as before.

3.3 The Cost of Misallocation

We can now turn our attention to the inner problem. Note that the inner problem is

separable across time periods, allowing us to separate it into a sequence of static problems.

We focus on the cost of misallocation in terms of output. Simplifying our notation, we can

5In practice, since there is no aggregate risk, the planner will only need to use the individual firm’s state
histories to make decisions.
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rewrite the problem as follows:

Y ∗
t

(
Kt, {ωit}i∈[0,1]

)
= max

{ki,t}i∈[0,1]

∫ 1

0

Et−1 [ωit · f (kit; zit)− (1− ωit) · ((1− δ) kit − ϕ (kit))] di

s.t.

Kt =

∫ 1

0

kitdi

This problem is now a special case of the environment in Hughes and Majerovitz (2023).

We can use their main proposition to derive the cost of misallocation, up to a second-order

approximation. Define

gi (ki) := Et−1 [ωit · f (kit; zit)− (1− ωit) · ((1− δ) kit − ϕ (kit))] .

Proposition 2 shows the cost of intensive-margin misallocation.

Proposition 2 ((Special Case of Hughes and Majerovitz (2023))). The cost of intensive-

margin misallocation is given by

log Y ∗
t

(
Kt,
{
ωit

(
St
)}

i∈[0,1]

)
− log Yt︸ ︷︷ ︸

Cost of Intensive-Margin Misallocation

≈ 1

2
· Egi(ki) [Ei]︸ ︷︷ ︸
Sales-Weighted Elasticity

·Vargi(ki)Ei
(
log

(
∂

∂kit
gi (ki)

))
︸ ︷︷ ︸
Weighted Variance of Log Expected MPK

where gi (ki) is the expected output of the firm as a function of ki, Ei is the elasticity of

expected output with respect to the cost of capital, Egi(ki) [·] denotes the weighted average,

weighting by gi (ki), Vargi(ki)Ei (·) denotes the weighted variance, weighting by gi (ki) Ei. All

moments are computed for the set of firms that are operating at time t−1. The formulas for

the expected output of the firm and the elasticity of expected output with respect to the cost

of capital are given by:

gi (ki) = Et−1 [ωit · f (kit; zit)− (1− ωit) · ((1− δ) kit − ϕ (kit))]

Ei = −

(
∂
∂ki

gi (ki)
)2

gi (ki) · ∂2

(∂ki)
2 gi (ki)
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Note that in a Cobb-Douglas setting, with f (k, z) = z · kα and no default, the elasticity

simplifies to E = α
1−α

. In our quantitative analysis, we will calibrate E = 1
2
, consistent

with α = 1
3
. Moreover, note that although the proposition above provides a second-order

approximation, it becomes exact in a setting where production is Cobb-Douglas and where

productivity and distortions are jointly log-normal (the weights also fall out in that special

case).

3.4 The Social Cost of Capital

We have already introduced the notion of the lender’s cost of capital, ρ, and the firm’s

cost of capital, rfirm. We now introduce the notion of the social cost of capital, rsocial. This

will reflect the social marginal product of capital at firm i. We define rsociali,t as the derivative

of aggregate consumption (Yt − It) at time t + 1 with respect to kit+1, taking expectations

at time t (when the investment decision is made).6 We have:

rsocialit :=
∂Et [Yt+1 − It+1]

∂ki,t+1

= Et [P t+1 (fk (ki,t+1; zi,t+1) + 1− δ)] + (1− P t+1) · ϕ′ (ki,t+1)

Combining this with the firm’s first-order condition for investment in Equation (2) yields:

1 + rsocialit =
(
1 + rfirmit

)
M+ (1− P t+1) · ϕ′ (ki,t+1) (6)

Note that 1+ rsociali,t−1 = ∂
∂ki

gi (ki)+1− δ. This will allow us to use the distribution of rsocial to

measure the cost of misallocation. When we bring this result to the data, we will focus on

measuring the variance of rsocial, and use standard values to calibrate E . Moreover, we will

make two further simplifying assumptions. First, we will focus on the unweighted variance,

since the weights are difficult to observe in practice. Second, we will use the log-normal

approximation Var
(
log
(
rsociali,t−1 + δ

))
≈ log

(
1 +

Var(rsociali,t−1 +δ)
E[rsociali,t−1 +δ]

2

)
To measure misallocation in our data, we combine this with our derivation of rsocial to

yield the following corollary:

6Proposition 2 is in terms of gross output, rather than consumption. Nevertheless, we define rsocial in
this way to parallel our definitions of ρ and rfirm.
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Corollary 1. Assume that
(
rsociali,t−1 + δ

)
is log-normally distributed, and also assume that

weighted moments can be replaced with unweighted moments. The cost of intensive-margin

misallocation is given by

log Y ∗
t

(
Kt,
{
ωit

(
St
)}

i∈[0,1]

)
− log Yt

≈ 1

2
· E · log

(
1 +

Var
(
rsociali,t−1

)
E
[
rsociali,t−1 + δ

]2
)

This corollary allows us to connect dispersion in rsocial, an object that we will be able

to measure in the microdata, with the cost of intensive-margin misallocation of capital. We

next turn to how to measure ρ, rfirm, and rsocial using credit registry data.

4 Empirical Methodology

This section describes the main data sources that we use, as well as the procedures we

follow to map model objects to the data in order to estimate the three costs of capital: the

lender, ρ, the firm, rfirm, and the social cost of capital, rsocial.

4.1 Data Sources

We rely on the FR Y-14Q dataset (Schedule H.1). This is a quarterly regulatory dataset

maintained by the Federal Reserve for stress testing purposes, which contains information

on individual loan facilities held in the books of the top 30 to 40 bank holding companies

(BHCs) in the US. The Y-14 includes all loan facilities exceeding $1 million and we consider

data in the period ranging from 2014Q4 to 2023Q4. Importantly for the purposes of our

analysis, the Y-14 contains detailed characteristics of credit facilities such as facility size,

origination date and maturity, interest rate or spread, interest rate variability, and the type

of loan. Additionally, the Y-14 also covers BHC’s risk assessments for each borrower, which

include estimates for the 1-year probability of default and loss given default. The probability

of default is typically estimated using internal default models that have to be approved by

regulators. While there is scope for some discretion in the assignment of these default
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probabilities (Plosser and Santos, 2018), these models are subject to standardized guidelines

following Basel II (BCBS, 2001). We focus on term loans issued to non-governmental and

nonfinancial companies based in the US. Our unit observation is a loan origination. Appendix

B contains a detailed description of the data cleaning procedure and sample restrictions.

In terms of coverage, Faria-e-Castro et al. (2024) show that the FR Y-14Q Schedule H.1

accounts for 91% of Commercial & Industrial lending undertaken by the 25 largest banks

in the US (FRED mnemonic: CIBOARD), and 55% of all Commercial & Industrial lending

undertaken by all commercial banks in the US (FRED mnemonic: BUSLOANS). Our focus

in term loans and relatively stringent cleaning procedures leave us with a total of 61,910

loans.

4.2 Mapping the Model to the Data

An important difference between the model and the data is the payment structure of

loans. In the model, for tractability, we assume that firms borrow in long-term debt that

is modeled as a perpetuity with geometrically decaying coupons. In the data, on the other

hand, we focus our analysis on term loans with a fixed maturity. This section shows how we

map model objects to the data, and how we exploit the Y-14 data to retrieve estimates of

the lender’s cost of capital, ρ, the firm’s cost of capital, rfirm, and the social cost of capital,

rsocial.

Consider a generic term loan with principal value B, maturity T , payment schedule

{Dt}Tt=1, repayment probability P assumed to be constant over time, and loss given default

LGD, also constant over time. The break-even condition for a lender with cost of capital ρ

is given by:

B =
T∑
t=1

[
P tDt + P t−1(1− P ) (1− LGD)B

(1 + ρ)t

]
,

Assume now that the loan is a non-amortizing term loan, with each payment consisting of

interest over the life of the loan, and the final payment consisting of a lump-sum principal

repayment. Thus Dt = rtB for t < T and DT = (1 + rT )B. The interest rate rt is either a
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fixed interest rate, or a fixed spread over a floating benchmark rate. We can then rewrite

the break-even condition at origination as:

1 =
T∑
t=1

[
P tE0 [rt] + P t−1(1− P ) (1− LGD)

(1 + ρ)t

]
+

P T

(1 + ρ)T
, (7)

This equation balances the present value of expected payments from the borrower against

the lender’s opportunity cost, ensuring that the lender breaks even. For a fixed-rate term

loan, data on (P,LGD, T, r) allows us to solve this equation for the match-specific lender’s

cost of capital ρ.

Floating Rate Loans. The data has loans with either fixed or floating rates. To estimate

ρ for floating rate loans, it is necessary to obtain estimates of E0 [rt], the expected interest

rate. Floating rate loans typically charge a reference rate plus a spread. For our analysis, we

use smoothed daily yield curve estimates provided by the Federal Reserve Board, based on

the methodology described in Gürkaynak et al. (2007). Under the expectations hypothesis,

long-term interest rates are assumed to reflect the market’s expectations of future short-term

rates. Using this framework, we back out E0 [rt] for each loan by combining the treasury

forward rate with the loan’s spread. It is important to note that most floating rate loans use

LIBOR or SOFR as the reference rate rather than treasury rates. However, for the purpose

of this analysis, we treat treasury rates and LIBOR/SOFR as equivalent, as they are very

similar during the sample period.

Lender’s Cost of Capital. Proposition 3 characterizes the lender’s cost of capital, ρ, in

the context of fixed interest rate loans.

Proposition 3 (Lender’s Cost of Capital). For a fixed interest rate loan:

1 + ρ = P (1 + r) + (1− P ) (1− LGD) .

Where r is the fixed interest rate on the loan. This expression reflects the lender’s return,

accounting for repayment in non-default states and recovery in default states. A key result
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for fixed rate loans is that ρ is independent of the loan’s maturity T , which simplifies its

calculation and interpretation.

For variable rate loans, however, the calculation of ρ requires a numerical solution of the

break-even condition presented in equation (7).

Firm’s Cost of Capital. Returning to the firm’s cost of capital of Proposition 1, we can

estimate Λ for term loans, and then solve for rfirm. Proposition 4 provides an equation to

estimate Λ directly from the data.

Proposition 4 (Firm’s Cost of Capital). We can solve for Λ as:

Λ =
(1− P ) (1− LGD)

1 + ρ− (1− P ) (1− LGD)
.

The firm’s cost of capital is given by:

1 + rfirm = (1 + ρ)− (1− P )(1− LGD)︸ ︷︷ ︸
Expected Recoveries

.

In this expression, (1 − P )(1 − LGD) represents expected recoveries, capturing the key

difference between ρ and rfirm: lenders benefit from expected recoveries, but borrowers get

zero profit in the default state, regardless of whether the lender recovers anything on the

loan.

For fixed interest rate loans, the firm’s cost of capital simplifies to:

1 + rfirm = (1 + r)P,

where r is the fixed interest rate. This formula reflects how the borrower’s cost adjusts based

on the likelihood of repayment and default outcomes. As a result, we are able to measure

the firm’s cost of capital for each loan in the data at origination.

Social Cost of Capital. We can also use the data to estimate the social cost of capital,

rsocial. For measurement, we specialize and assume that the liquidation technology is linear,

meaning it takes the form ϕ (k) = ϕ · k. Combining with Equation (6), this yields a formula
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for rsocial in terms of objects in the data.

Proposition 5. Assume a linear liquidation technology. The social cost of capital is then:

1 + rsocial =
(
1 + rfirm

)
M+ (1− P) · (1− LGD) · lev

= (1 + ρ)M+ (lev−M) · (1− P) · (1− LGD)

where lev := bt
kt+1

is the firm’s leverage ratio.

In our empirical analysis, we will set the price feedback multiplier M = 1. Under that

calibration, the social cost of capital simplifies further:

1 + rsocial = 1 + ρ︸ ︷︷ ︸
Lender’s Cost of Capital

+(lev − 1) · (1− P ) · (1− LGD)︸ ︷︷ ︸
Agency Friction

The social cost of capital is thus equal to the lender’s cost of capital, plus an agency

friction. This agency friction reflects the tension between lenders and borrowers. For a firm

whose debt is less than its capital (i.e., lev < 1), debt finances only part of the capital, but

the entire liquidation value of the capital is used to repay debt. As a result, the lender’s

return, ρ, is greater than the true social cost of capital, since some of that return reflects

a transfer from shareholders to creditors. When lev = 1, then there is no transfer and the

agency friction is zero.

5 Empirical Results

5.1 Summary Statistics

We provide summary statistics for key variables in Table 1. Our unit of observation is a

loan origination, and so all reported firm financials correspond to the financials of the quarter

in which that origination took place. The average annual loan interest rate in our sample

is 3.87%. These loans have an average expected default probability of 1.38% over the next

year, and banks expect to lose, on average, 34.5% of the outstanding value of the loan in the
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event of default. As a result, the lender’s cost of capital, ρ, averages 3.56%. 7 The social

cost of capital and firm’s cost of capital are even lower, at 3.29% and 2.64% respectively.

Interest rates vary across loans, with a standard deviation of 1.5%, reflecting heterogene-

ity both within and across time. The lender’s cost of capital shows slightly less heterogeneity,

with a standard deviation of 1.48%. In contrast, the social cost of capital and firm’s cost of

capital have higher heterogeneity, with standard deviations of 1.84% and 2.48%. It is not

surprising that the firm and social cost of capital vary more than the lender’s cost of capital,

because they include wedges that add to the variance. Even if the financial market were

efficient from the lender’s perspective (i.e. if the lender’s return were equalized across all

loans), these wedges would still create variation in rfirm and rsocial.

Why does the lender’s cost of capital vary less than the interest rate? To build intuition,

we can focus on the formula for the lender’s cost of capital, ρ, for fixed rate loans. With some

rearrangement, the lender’s cost of capital can be expressed as ρ = r − (1− P )(r + LGD).

Since r is small at annual frequencies compared to LGD, we can use the approximation

ρ ≈ r − (1− P ) · LGD. This yields the variance decomposition

Var(ρ) ≈ Var(r) + Var((1− P ) · LGD)− 2 · Var(r, (1− P ) · LGD)

The variance of ρ is smaller than the variance of r because of the covariance term: interest

rates are higher when the lender’s expected losses, (1− P ) · LGD, are high.

We view these results as a vindication for our method of estimating the cost of capital.

If our measures of default probabilities and recovery rates were just noise, then the variance

of the lender’s cost of capital would be substantially greater than the variance of interest

rates: the covariance term would be zero, and the term Var((1− P ) ·LGD) would push the

variance of ρ substantially above the variance of r. Instead, the variance of the cost of capital

is smaller, suggesting that default probabilities and recovery rates covary with interest rates

in the way that we would expect in a financial market that is close to efficient.

7The negative covariance of r and P means that the average ρ is lower than we might have expected
from the raw averages of P , r, and LGD. For fixed rate loans, 1 + ρ = P (1 + r) + (1 − P )(1 − LGD); the
average value of P (1 + r) will be brought down by the fact that P is low when (1 + r) is high.
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Table 1: Summary Statistics

Mean SD p10 p50 p90

Interest Rate 3.87 1.50 2.10 3.75 5.81
Maturity (years) 6.47 4.41 3.00 5.00 10.00
ρ (%) 3.56 1.48 2.02 3.53 5.28
rfirm (%) 2.64 2.48 0.93 2.84 4.68
rsocial (%) 3.29 1.84 1.67 3.30 5.12
Prob. Default (%) 1.38 2.18 0.19 0.91 2.65
Loss Given Default (%) 34.53 13.17 18.00 35.45 50.00
Loan Amount (M) 11.33 68.38 1.12 2.68 24.90
Sales (M) 1,418.73 6,124.29 2.39 67.41 2,239.46
Assets (M) 2,026.70 9,260.13 1.51 41.54 2,703.83
Leverage (%) 64.93 34.23 28.83 63.17 95.29
Return on Assets (%) 22.64 29.10 4.70 15.55 44.20

N Loans 61910
N Firms 35063
N Fixed Rate 28183
N Variable Rate 33727

5.2 Averages by Quarter of Origination

We begin by analyzing the time series of average values, by quarter of origination. The

key inputs into our measures of the cost of capital are the interest rate, default probability,

and loss given default. We first analyze the behavior of these averages over time, in Figure 1.

We separate the interest rate time series into interest rates on fixed-rate loans and the spread

for variable-rate loans. During the time period we study, interest rates fall and then rise

concurrent with the movement of monetary policy; average spreads are very stable, ranging

from 1.9% to 2.3%. Default probabilities show a modest upward secular trend, along with a

temporary spike around the time of the COVID-19 pandemic. Expected losses given default

fall around the onset of the pandemic, implying that banks expect larger recoveries in the

event of default. Note, however, that the magnitude of the change in recoveries is sufficiently

small that it has little effect on ρ, since this change is multiplied by the (small) probability

of default.
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Interest Rate (Fixed Only) Interest Rate Spread (Variable Only)

Default Probability Loss Given Default

Figure 1: Averages by Quarter of Origination (r, Spreads, Default Probability, and LGD)

Next, in Figure 2, we plot the lender’s cost of capital, ρ, the firm’s cost of capital, rfirm,

and the social cost of capital, rsocial, against the five-year treasury rate. In computing rsocial,

we set M = 1. The lender’s cost of capital is nearly identical to the average rsocial, and both

rates covary strongly with the five-year treasury rate. There is an average spread of roughly

150 basis points between the lender’s cost of capital and the treasury rate, although it has

a delayed reaction to movements in treasury rates: the spread is initially stable at 150 basis

points, then rises above the average when treasury rates fall and falls below the average once

treasury rates rise again. Note that the lender’s cost of capital is already adjusted for default

risk, and so this cannot explain the spread relative to treasuries. The social cost of capital,

rsocial is quite close to ρ. In contrast, the firm’s cost of capital, rfirm, tracks the treasury

rate more closely with a small spread.

While our analysis takes into account the maturity of the loan, there are potential con-
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Figure 2: Averages by Quarter of Origination (ρ, rfirm, rsocial, and Five-Year Treasury Rate)

cerns that loans of different maturities may face different rates, even if they reflect a constant

spread on a the (time-varying) risk-free rate. To mitigate these concerns, in Appendix C,

we recompute our analysis focusing on fixed-rate, five-year loans. This is the most common

maturity for fixed rate loans. Focusing on fixed-rate loans is convenient because it is not

sensitive to the term structure of the loan, nor to estimates of expected future rates derived

from the yield curve. Five-year loans are also convenient because they allow direct compar-

ison to the five-year treasury rate. The average cost of capital for fixed-rate, five-year loans

is very similar to the overall sample: there is a roughly 150 basis point spread relative to

five-year treasuries, following the same dynamics as in the overall sample.

5.3 Cross-Sectional Heterogeneity

We next turn to study the cross-sectional heterogeneity in interest rates and to the cost

of capital.
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To begin, we decompose the variance into time, firm, and bank fixed effects. We follow

the variance decomposition of Daruich and Kozlowski (2023). To ensure that we can estimate

firm level fixed effects we subset our sample to the set of firms with five or more distinct

loans. We then progressively add time, firm-time, and bank-firm-time fixed effects, building

to the fixed-effects specification in Equation 8 below, where i indexes firms, τ represents the

quarter of origination, b indexes banks, and l represents the particular loan.

riτbs = αi + γiτ + δiτb + εiτbs (8)

The results are in Table 2. The time fixed effect explains 61% of the variance in interest

rates and 50% of the variance in the lender’s cost of capital. Adding in firm time fixed effects

explains an additional 24% of the variance of interest rates, and 25% of the variance in the

lender’s cost of capital. Results are similar for the social cost of capital, while the firm’s

cost of capital behaves somewhat differently: only 23% of the variance is explained by time

fixed effects, but adding in firm-time fixed effects explains another 35% of the variance. For

all four variables, the adding in bank-firm-time fixed effects explains a negligible share of

the variance (at most 1.12%, for rfirm), suggesting that heterogeneity across banks is not an

important explanation of heterogeneity in interest rates or the cost of capital.

Time Firm Bank Residual

Interest rate 60.76 24.00 0.29 14.94

ρ 50.18 25.42 0.68 23.72

rfirm 23.11 35.02 1.12 40.75

rsocial 40.38 29.78 0.85 28.99

N Firms 1907
N Securities 18434

Table 2: Variance decomposition of interest rates and cost of capital (ρ, rfirm, and rsocial)

We also explore the correlation between the cost of capital and firm-level covariates. We

regress log(1+r) separately on log leverage, log return on assets, and log assets. We conduct

this analysis for interest rates, ρ, rfirm, and rsocial. The results are shown in Tables 3, 4, 6,
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and 5. Of the three covariates, the best predictor is the return on assets; interest rates and

the cost of capital are consistently higher at firms with high return on assets. Although we

cannot attach a causal interpretation to the estimated coefficients, this would be consistent

with a model where causality runs from the cost of capital to firm decisions: firms with a

higher cost of capital will demand a high return on their investments. Yet perhaps more

notable is the very low R2. The return on assets explains between 2 and 3% of the variance,

depending on the measure of the cost of capital, with other covariates explaining less than

1%. Firm-level covariates explain approximately none of the variance in the cost of capital.

(1) (2) (3)

log leverage 0.006
(0.00)

log roa 0.132∗∗∗

(0.02)
log assets -0.096∗∗∗

(0.00)

Observations 61583 1659 61902
Adjusted R2 0.000 0.017 0.009

Standardized beta coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Regression of log(1 + r) on covariates

(1) (2) (3)

log leverage -0.012∗∗∗

(0.00)
log roa 0.144∗∗∗

(0.03)
log assets -0.016∗∗∗

(0.00)

Observations 61583 1659 61902
Adjusted R2 0.000 0.020 0.000

Standardized beta coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Regression of log(1 + ρ) on covariates
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(1) (2) (3)

log leverage -0.045∗∗∗

(0.00)
log roa 0.172∗∗∗

(0.03)
log assets 0.070∗∗∗

(0.00)

Observations 61583 1659 61902
Adjusted R2 0.002 0.029 0.005

Standardized beta coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Regression of log(1 + rfirm) on covariates

(1) (2) (3)

log leverage 0.139∗∗∗

(0.01)
log roa 0.134∗∗∗

(0.03)
log assets 0.008∗

(0.00)

Observations 61583 1659 61902
Adjusted R2 0.019 0.017 0.000

Standardized beta coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Regression of log(1 + rsocial) on covariates
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5.4 Misallocation

What does the heterogeneity in the cost of capital imply for the cost of misallocation? To

answer this we use our approximate formula for misallocation from Corollary 1, calibrating

E = 1/2, M = 1, and δ = 0.06.8 Our calibrated value for E is standard, and consistent

with a production function of f(k, z) = zk1/3. We compute the MPK as rsocial + δ, and

then compute Var(logMPK) using the log-normal approximation Var(logMPK) ≈ log(1+

Var(MPK)/E[MPK]2). 9 We compute this statistic by quarter of origination, in order to

focus on within-period misallocation. Our model does not contain aggregate shocks, and we

would thus need a richer model to study misallocation across time. We interpret our results

below as reflecting what misallocation would be for an economy that remained in the same

steady state.

We find that the misallocation of capital resulting from heterogeneity in the cost of

capital, plus the agency friction, is small. We plot our estimates in Figure 3. In the period

before the COVID pandemic the implied misallocation is flat and low: formally reallocating

capital across firms would increase aggregate output by 0.5%. This number rises dramatically

with the onset of the pandemic, averaging 1.3% during 2020 and 2021, before falling back to

a somewhat elevated 0.7% in 2022 and 2023.

Our model of misallocation studies an economy in steady-state, which complicates the

interpretation of short-run changes in the distribution of the cost of capital. A temporary

shock to the dispersion of rsocial among newly originated loans will have only limited effects

on the dispersion of rsocial in the full population of firms. Moreover, a steady-state model

with no aggregate shocks is not well suited to studying aggregate dynamics in response to a

shock. Thus, we caution against over-interpreting the transitory rise in implied misallocation

8Note that in steady state δ = I/Y
K/Y . In the data, at the annual frequency, the capital-output ratio is

about 3 while the investment-output ratio is about 0.18 (we measure capital as BEA Current-Cost Net Stock
of Fixed Assets and investment is GDPI in FRED). Hence, at an annual frequency, δ = 0.06.

9We follow Hughes and Majerovitz (2023) in using the log-normal approximation rather than computing
the variance of logMPK directly. Using logMPK directly will in general be very sensitive to outliers with
low MPK.
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during the pandemic: if the increased dispersion of rsocial were permanent, then misallocation

would rise by 0.8% in steady state, but it is not obvious how much misallocation actually

rose in response to the transitory shock. Instead, our main takeaway from the analysis is

that in “normal times” (e.g. before the pandemic), heterogeneity in rsocial implies a very

small cost of misallocation in steady state.

Figure 3: Cost of Misallocation

To further understand the drivers of misallocation, we decompose it into the component

coming from heterogeneous cost of capital, ρ, and the component coming from heterogeneity

in the agency friction. We perform two counterfactuals. In the first, we replace ρ with its

average value for that quarter. This tells us how much misallocation arises from heterogeneity

in the agency friction. In the second counterfactual we set the agency friction equal to its

average value within the quarter, which allows us to measure the misallocation arising from

heterogeneity in ρ. Note that neither counterfactual changes the within-quarter average of

rsocial, and thus the results are driven by changes in the variance of rsocial.
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Figure 4: Decomposing Misallocation (Heterogeneity in Cost of Capital vs Agency Friction)

We show the results of these decompositions in Figure 4. Misallocation is typically driven

by heterogeneity in the cost of capital, although the rise in misallocation during the pandemic

is driven by an increase in the variance of the agency friction. In the pre-pandemic period,

misallocation is largely a result of heterogeneous ρ: if ρ is equalized across firms then the cost

of misallocation falls to just 0.2%. In contrast, the cost of misallocation in the counterfactual

with a constant agency friction is slightly higher, at 0.6%, than in the benchmark case (this

implies a negative covariance between the cost of capital and the agency friction). During

the pandemic period (2020-2021), heterogeneity in the cost of capital and in agency frictions

play a roughly equal role: the total cost of misallocation is 1.3%, while it is 0.7% in either

counterfactual. In the post-pandemic period (2022-2023), heterogeneity in ρ once again plays

the dominant role: misallocation would be only 0.2% in the constant ρ counterfactual.

In Appendix C, we repeat our misallocation analysis, focusing on five-year, fixed-rate
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loans. We find that the results are very similar to those of our main analysis.10 This

reinforces the robustness of our results, confirming that heterogeneity in the cost of capital

across firms is not driven by differences in maturity or term structure.

6 Conclusion

This paper develops a novel methodology to estimate the cost of capital using credit

registry microdata, and examines the implications of dispersion in the cost of capital for

misallocation. We show, in a dynamic corporate finance model, the connection between the

lender’s cost of capital, the firm’s cost of capital, and the social cost of capital, and how to

measure these objects in the data. We also show how the mean and variance of the social cost

of capital can be used as sufficient statistics to measure the output losses from misallocation

that arise from credit market imperfections.

After developing this general methodology, we apply it to credit registry data for the

United States. We find that although the cost of capital varies across firms, the resulting

misallocation is modest in normal times, resulting in output losses of only 0.5%. However,

dispersion in the social cost of capital among newly originated loans rose dramatically during

the COVID-19 pandemic, driven by a rise in the dispersion of agency frictions. Understand-

ing the causes of this rise in dispersion, as well as the consequences for aggregate productivity,

is an important area for future research. Moreover, comparing the distribution of the cost of

capital in the United States to the distribution in other economies, especially less developed

economies, will help us better understand how financial markets contribute to development.

10In the robustness sample, there is also a brief spike in the dispersion of rsocial earlier in the period, but
it only lasts for one quarter.
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Appendix

A Proofs

Proof of Proposition 1.

Et

[
Pt+1 (θ + (1− θ)Qt+1)

Qt

]
= (1 + ρ)

Et [Pt+1 (θ + (1− θ)Qt+1)]

Et [Pt+1 (θ + (1− θ)Qt+1)] + Et [(1− Pt+1)ϕ(k′)/b′]

= (1 + ρ)

(
1 +

Et [(1− Pt+1)ϕ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

)−1

= (1 + ρ) (1 + Λ)−1

where

Λ ≡ Et [(1− Pt+1)ϕ(k
′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

Proof of Proposition 3.

1 =
T∑
t=1

(
P

1 + ρ

)t [
r +

(1− P )

P
(1− LGD)

]
+

(
P

1 + ρ

)T

Let x = P
1+ρ

so

1 =

(
r +

1− P

P
(1− LGD)

)
x

1− x

(
1− xT

)
+ xT

Guess that 1 + ρ = (1 + r)P + (1− P ) (1− LGD)

1− x

x
=

1

x
− 1 =

(1 + r)P + (1− P ) (1− LGD)

P
− 1 = r +

1− P

P
(1− LGD)

And, therefore

1 = 1
(
1− xT

)
+ xT

which validates the guess.
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Proof of Proposition 4.

Model Λ =
Et [(1− Pt+1)ϕ(k

′)/b′]

Et [Pt+1 (θ + (1− θ)Qt+1)]

Data Λ =
(1− P ) (1− LGD)

PQ1

The break-even condition implies

1 + ρ = PQ1 + (1− P ) (1− LGD)

Hence

PQ1 = 1 + ρ− (1− P ) (1− LGD)

⇒ Λ =
(1− P ) (1− LGD)

1 + ρ− (1− P ) (1− LGD)

B Data

B.1 Details on Data Cleaning and Construction

While the FR Y-14Q Schedule H.1 data goes back to 2011, we keep only data from

2014Q4 due to data quality and consistency of reporting issues.

Borrowers. We drop all loans to borrowers without a Tax Identification Number. We keep

only Commercial & Industrial loans to nonfinancial U.S. addresses, i.e. lines reported on FR

Y-9C equal to 3, 4, 8, 9, and 10. We drop all borrowers with NAICS codes 52 (Finance and

Insurance), 92 (Public Administration), 5312 (Offices of Real Estate Agents and Brokers),

and 551111 (Offices of Bank Holding Companies), as some financial companies are classified

under the later two NAICS codes in our sample.
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Loans. We drop all loans with a negative committed exposure, or for which the utilized

exposure exceeds the committed exposure as these are likely to be mistakes. We drop all

observations for which the origination date exceeds the current date, and all those for which

the maturity date precedes the current date.

We keep only “vanilla” term loans (Facility type equal to 7), and we thus exclude Type

A, B, and C term loans, as well as bridge term loans. We keep only loans that are classified

as fixed or variable rate, and drop mixed interest rate variability loans. We keep only loans

with maturity between 1 and 10 years, thus excluding very short-term and very long-term

loans. We keep only loans with interest rates in the 1st-99th percentiles for fixed rate loans,

and spread in the 1st-99th percentiles for variable rate loans, as some of the very high and

low rates/spreads are likely to be data errors. Additionally, we drop loans with interest rates

higher than 50% at origination. We also drop loans for which the probability of default and

the loss given default are either missing or outside of the [0, 1] intervals. We also drop loans

for which the probability of default is equal to 1, as that is an indicator that the loan is in

default.
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C Robustness: Results for Fixed-Rate Five-Year Loans

Figure 5: Averages by Quarter of Origination (Fixed-Rate Five-Year Sample)
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Figure 6: Cost of Misallocation (Fixed-Rate Five-Year Sample)

35



Figure 7: Decomposing Misallocation (Fixed-Rate Five-Year Sample)
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