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Abstract

Misallocation of inputs across firms has been proposed as a reason for low levels

of development in some countries. However, existing work has largely relied on strong

assumptions about production functions in order to estimate the cost of misallocation.

We show that, for arbitrary production functions, the cost of misallocation can be ex-

pressed as a function of the variance of marginal products. Using an RCT that gave

grants to microenterprises, we estimate heterogeneous returns to capital by baseline

characteristics, and provide a lower bound on the total variance of returns to capital.

This lower bound is a nonlinear function of the parameters from a linear IV model, so

that standard methods (e.g. the delta method or projection) have poor performance.

We provide novel econometric tools that provide uniformly valid confidence intervals

for nonlinear functions of parameters. We find evidence for sizable losses from misallo-

cation of inputs across the firms we study, although the magnitude depends critically

on which inputs we allow to be reallocated. We estimate that optimally reallocating

capital would increase output by 22%, while optimally reallocating all inputs would

increase output by 301%.
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1 Introduction

In the absence of distortions, competitive markets allocate inputs across firms to their effi-

cient use. Deviations from this efficient benchmark can lower aggregate productivity sub-

stantially. An extensive literature in macroeconomics and development has found large losses

in output due to misallocation, especially in less developed economies. This has led many

economists to view misallocation as "our best candidate answer to the question of why are

some countries so much richer than others" (Jones, 2016).

However, an important shortcoming in this literature has been a heavy reliance on re-

strictive assumptions about firm production functions. Thus, most prior estimates of the

cost of misallocation are implicitly a joint test of market efficiency and of the strong auxiliary

assumptions that underlie these calculations. In the cases where these methods have appar-

ently found large losses from misallocation, it is not always obvious whether this suggests a

rejection of efficient markets or a rejection of the auxiliary assumptions.

In this paper, we show how to measure the cost of misallocation without relying on

restrictive assumptions about production functions. To measure misallocation, we need to

connect the cost of misallocation back to something that we can estimate in the data. We

start from our question — what is the cost of misallocation of inputs — and work backwards.

We first provide an aggregation result, showing, for arbitrary production functions that

misallocation is a function of the variance of the log marginal revenue product of capital

(MRPK). We then show how to measure marginal products using an RCT, exploiting a

randomized controlled trial by de Mel et al. (2008) that randomly assigned grants to mi-

croentrepreneurs in Sri Lanka. We use this experiment to estimate heterogeneous returns

to capital by baseline characteristics, which provides a lower bound on the total variance of

log MRPK. Finally, since standard methods cannot be used to conduct correct inference on

this object, we provide new econometric tools to construct confidence intervals for nonlinear

functions of parameters.

We find substantial dispersion in the marginal revenue product of capital among Sri

Lankan microentrepreneurs. We estimate that the standard deviation of monthly returns to

capital is 9.8%, or 1.23 times the mean; our 90% confidence interval rules out a standard

deviation below 4% and a standard-deviation-to-mean ratio below 0.47. In our preferred

calibration, this implies that optimally reallocating capital would increase output by 22%,

while optimally reallocating all inputs would increase output by 301%.

Our results connect a macroeconomic question (what is the cost of misallocation?) to

a microeconomic question (what is the variance of marginal products across firms?), and

then to an econometric question (how do we measure this variance in an instrumental vari-
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ables setting, and construct valid confidence intervals?). In doing so, we also draw con-

nections between literatures on the microeconomics and macroeconomics of development.

Our methodology shows how to correctly aggregate microeconomic evidence of dispersed

marginal products into an aggregate cost of misallocation. Equivalently, we show how to use

experimental or quasi-experimental variation to provide rigorous empirical microfoundations

for macroeconomic models of misallocation.

Macro to Micro: Measuring Misallocation in Terms of Marginal Products. We

begin by connecting misallocation to the distribution of marginal products. In an efficient

economy, the marginal product of capital should be equalized across all firms. If firms

produce heterogeneous products and households are price takers, then this condition can

instead be expressed in terms of the “value of the marginal product.” Focusing on capital,

the “VMPK” is the price of the firm’s output times the marginal product of capital. In an

efficient economy, the VMPK must be the same across firms.

We consider a horizontal economy in which firms use a single input, capital, to produce

differentiated products, which are then aggregated into a final good. We allow for arbitrary

smooth production functions at the firm level. We do not make any assumptions about

firm conduct, except that the household, is a price taker. We focus on counterfactuals that

hold the aggregate supply of inputs fixed, in order to home in on the idea of misallocation

of inputs across firms. In the first-best, VMPK is equalized across firms, but we allow

for reduced-form “wedges” that represent deviations from the planner’s efficient first-order

condition.

In this economy, we show that when households have CES demand, the cost of misallo-

cation is given by

L ≈ 1

2
EVar (log VMPKi)

where E is the (negative) elasticity of firm output with respect to the wedge, and L is the

potential gains, in terms of log aggregate output, from optimally reallocating inputs. This

result is exact for Cobb-Douglas production functions with lognormally distributed produc-

tivity and wedges, and is a second-order approximation for arbitrary production functions.1

The magnitude of E depends on both the CES parameter and on returns to scale in the

production function. Thus, the potential gains from optimally reallocating inputs will de-

pend critically on which inputs are being reallocated. If all inputs can be reallocated, then

a constant-returns-to-scale production function implies that E equals the CES parameter;

1The second-order approximation replaces the elasticity E with a sales-weighted average of firm-specific
elasticities Ei, and Var (logVMPKi) with a sales-times-elasticity weighted variance.
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if only capital can be reallocated, then attempts to reallocate inputs will quickly run into

decreasing returns to scale, dampening potential gains.

Finally, since we will not have separate data on prices and quantities, we show that the

assumption of CES demand also allows us to re-express misallocation in terms of the variance

of the log marginal revenue product of capital. Whereas the VMPK measures the price of

output times the marginal product of capital, the MRPK measures the derivative of revenue

with respect to capital. In general, the MRPK will be lower than the VMPK because an

increase in capital will raise output and thus lower prices. However, under CES demand, the

MRPK will equal to the VMPK times a constant, and so the variance of log VMPK and the

variance of log MRPK will be the same.

Micro to Metrics: Measuring Marginal Products with an IV Regression. Our

next step is to develop a strategy to estimate the variance of log MRPK across firms. To do

this, we note two challenges. First, we must identify the causal effect of changes in capital,

but variation in capital is in general endogenous: firms choose their capital as a function

of productivity, so we would expect changes in capital to be correlated with changes in

productivity. We solve this problem by using data from an RCT by de Mel et al. (2008).

This experiment, conducted on a sample of microenterprises in Sri Lanka, randomized grants

to firms in order to estimate the returns to capital. We use the grant as an instrument for

capital, in order to identify the MRPK.

The second challenge is that we must identify not just the average returns to capital,

but the variance of returns to capital across firms. In general, this is not possible without

additional assumptions: the variance of treatment effects is not identified. However, we can

provide an informative lower bound by projecting the returns to capital onto observable

baseline characteristics. By the law of total variance, the total variance of MRPK will be

equal to the variance of expected MRPK given baseline characteristics, plus the expected

variance of MRPK conditional on those characteristics. Thus, the variance of the condi-

tional average treatment effects provides an estimable lower bound on the total variance of

treatment effects.

Targeting the predictable component of the variance of MRPK, rather than the total

variance, also has attractive features from an economic perspective. In principle, dispersion

in returns to capital ex post can result from misallocation or from risk: some investments

are good ideas ex ante but do not pay off. Instead, dispersion in ex ante returns to capital

reflects true misallocation. By focusing on the predictable component of the variance of

returns, we ensure that we are measuring true misallocation.

To implement this, we express the returns to capital using a linear IV model, with capital

entering both directly and interacted with baseline covariates. To simplify our formulas and
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to improve variable selection, we use principal components analysis to recast the baseline

characteristics as orthogonal variables with mean zero and standard deviation one. This

orthonormal basis provides us with a simple expression for the variance of log expected

returns to capital, as a nonlinear function of the parameters of a linear IV model.

Inference for Nonlinear Functions of Parameters. Given that the variance of log

MRPK is a nonlinear function of parameters, our final step is to conduct valid inference on

this function. The standard methods to construct confidence intervals for functions of pa-

rameters are the delta method and the projection method . The delta method approximates

the distribution of a function of parameter estimates using a first order linear approximation.

The function that we study is highly nonlinear, so that this method can perform poorly in

practice – in fact, the function has zero derivative at the point where misallocation is equal

to zero, and has infinite derivative at the point where the average returns to capital are

zero and so fails completely in these cases. The projection method is valid regardless of

the degree of nonlinearity, but it is generally conservative (and increasingly so as the num-

ber of parameters increases). Simulations calibrated to our empirical setting suggest that

the performance of the delta method is sensitive to the true value of parameters, while the

projection method results in confidence intervals that are too wide to be useful.

We thus develop novel econometric tools in order to construct uniformly valid confidence

intervals for functions of parameters, in settings where the delta method fails. To test a

given null hypothesis, our method uses the inverse-variance-weighted distance between the

estimated parameter and the constraint imposed by the null. We obtain critical values

for this test statistic by treating the underlying parameter estimates as Gaussian and then

simulating the distribution of the test statistic. We show in simulations that our method

delivers correct size, even when other methods fail.

Results: Estimates of Misallocation for Sri Lankan Microenterprises. Finally,

having developed a methodology to measure the cost of misallocation, we put these tools

to work. Our estimates suggest that the variance of log MRPK across firms is sizable. Our

preferred point estimates suggest that the average monthly returns to capital is 8.0%, and

the standard deviation of returns is 9.8%. This implies a variance of log MRPK of 93 log

points, with the 90% confidence interval ruling out values below 20 log points. If we had

instead assumed a homogeneous returns-to-scale Cobb-Douglas production function as in

Hsieh and Klenow (2009), we would have inferred an average monthly return of 7.8% and

a variance of log MRPK of 130 log points. Our confidence intervals cannot rule out the

Cobb-Douglas estimates. However, the advantage of our approach is that our estimates of

the variance of marginal products are valid regardless of whether firms truly produce with a
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homogeneous Cobb-Douglas production function.

We then combine our main estimates with a standard calibration for E , in order to

back out the cost of misallocation. We estimate that optimally reallocating capital would

increase output by 22%, while optimally reallocating all inputs would increase output by

301%. This suggests a potentially important role for misallocation, although also highlights

the importance of firm returns-to-scale in determining the extent of misallocation.

Related Literature

We contribute to a large literature on the cost of misallocation. After the seminal contribu-

tions of Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), many authors have

worked on estimating and better understanding the costs of misallocation. This literature

is summarized in Hopenhayn (2014) and in Restuccia and Rogerson (2017). Recent work

(Baqaee and Farhi, 2020; Bigio and La’O, 2020; Dávila and Schaab, 2023; Liu, 2019) on

aggregation has elucidated the connection between changes in aggregate output (and aggre-

gate welfare) and individual marginal products and marginal utilities. By integrating along

a path from the distorted equilibrium to an undistorted equilibrium, this line of research

has also provided insights into the measurement of misallocation. This work informs our

own paper, which highlights the connection between misallocation and the distribution of

marginal products. We generalize previous results to allow for arbitrary firm production

functions, though we still impose CES demand.

Our paper also connects to a literature in development microeconomics that finds high

and dispersed returns to capital, and interprets this as evidence of misallocation. An influen-

tial paper by Banerjee and Duflo (2005) summarizes much of this evidence; since then, more

work has found evidence that returns to capital are high (de Mel et al., 2008; Fafchamps

et al., 2014; McKenzie, 2017) and vary substantially across firms (Hussam et al., 2022; Bea-

man et al., 2023; Crépon et al., 2023). We view our paper as providing a bridge between

these related literatures in development microeconomics and macroeconomics. Our methods

show how to correctly aggregate this rigorous microeconomic evidence, in order to provide

estimates of the cost of misallocation.

A number of authors have noted challenges in the measurement of misallocation. Bils

et al. (2021) highlight the problem presented by measurement error, and present a method-

ology to use panel data to separate misallocation from measurement error. Rotemberg and

White (2021) also focus on measurement error, showing how differential data-cleaning meth-

ods by the statistical agencies in different countries can make apparent misallocation look

very different across countries. Our methodology is robust to measurement error: a byprod-

uct of using an instrumental variables regression is that (classical) measurement error does
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not bias our estimates. Gollin and Udry (2021) address both measurement error and risk

(ex post shocks to productivity), using data on farmers who produce on multiple plots and

exploiting the assumption that allocations are undistorted within-farm across-plot. By pro-

jecting returns onto baseline observables, our method allows us to isolate misallocation from

risk. Haltiwanger et al. (2018) highlight the strong assumptions required by the standard

approach to measuring misallocation: in particular, isoelastic demand and homogeneous,

constant-returns-to-scale production. Our approach relaxes these assumptions to allow for

arbitrary production functions, although we will still require isoelastic demand (CES).

Most closely related to our work is a contemporaneous paper by Carrillo et al. (2023).

Like ours, their paper studies misallocation, and uses random shocks (demand shocks from

procurement lotteries, instead of capital supply shocks from an RCT) to identify moments

of the distribution of marginal products.

We view both papers as complementary, and together providing a useful toolkit for

future applications. Our paper differs from theirs in a few important ways. First, we target

a different variance: the variance of expected returns, rather than the total variance of

returns. Thus, our estimates provide a lower bound on misallocation, while their estimates

provide an upper bound. Since we target different variances, the econometric method of our

paper is also different from theirs. Their paper uses a correlated-random-coefficients model

(Masten and Torgovitsky, 2016) to estimate the variance of marginal products across firms,

relying on the linearity of the model. In contrast, we project marginal products onto baseline

characteristics, in order to derive a lower bound on the variance of MRPK.

These different methods have different data requirements. Their method requires that

the instrument be fully independent of the residual (as opposed to just uncorrelated), and

also requires at least three points of support for the instrument. This does not rely on

any assumptions beyond the typical ones for linear IV models with interaction effects. In

practice, we find that the Carrillo et al. (2023) method produces uninformative confidence

intervals in our setting, suggesting that our method may provide more statistical power in

some settings.

Finally, and perhaps most importantly, we study a different setting and get different re-

sults: Carrillo et al. (2023) find a very small cost of misallocation for construction companies

in Ecuador, while we find a more sizable cost of misallocation among microenterprises in Sri

Lanka. Taken together, our results suggest that the degree of misallocation may vary across

sectors and countries.

Comparison to Standard Approach. Our approach to measuring misallocation shares

some elements in common with the standard approach, pioneered by Hsieh and Klenow

(2009). The aggregation assumptions behind our approach are the same as those in the
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standard approach: we rely on CES demand to aggregate differentiated products across

firms. In the lognormal case, our aggregation is identical to that in the standard approach.2

More generally we use a second-order approximation to misallocation, which should yield

very similar results to the standard approach.

However, our approach differs from the standard approach in that we do not rely on

assumptions about the functional form of the firm-level production function. Recasting the

standard approach into our own framework, the standard approach assumes a particular

production function (homogeneous loglinear) so that the average product is proportional

to the marginal product. This approach will fail in settings where the production function

does not take the assumed functional form (e.g. setting with fixed costs), or in which the

production function is loglinear but the slope parameters are heterogeneous across firms.

In contrast, we use an RCT to that provides exogenous variation in capital, allowing us to

estimate marginal products directly. This is the critical distinction between our approach

and the standard approach: we measure marginal products with variation in inputs on the

margin, rather than inferring them from average products.

Outline. Section 2 shows how the cost of misallocation can be measured as a function

of the distribution of marginal products across firms. Section 3 shows how to measure

heterogeneous marginal products using an RCT, and provides a lower bound on the total

variance of log MRPK as a nonlinear function of the parameters from a linear IV model.

Section 4 explains the econometrics of nonlinear functions of parameters, such as our lower

bound, and provides novel tools to provide valid inference in this setting. Section 5 uses

the tools we develop to estimate the cost of misallocation. Each section begins with a less

technical summary, so readers who wish to skip some sections can understand later sections

without too much loss. Section 6 concludes.

2 Measuring Misallocation with Marginal Products

Summary

We begin by showing how the cost of misallocation depends on the distribution of marginal

products across firms. In doing so, we recast a macroeconomic question (“What is the cost

of misallocation?”) as a microeconomic question (“What is the variance of log MRPK across

firms?”).

2We focus on a single sector version of the model, motivated by a desire for clarity and the fact that
the microenterprises we study operate in relatively few sectors. However, extending our results to multiple
sectors would be straightforward, and would yield extremely similar results.

7



We start by highlighting that allocative efficiency requires the equation of marginal prod-

ucts across firms. In a horizontal economy with heterogeneous products and price-taking con-

sumers, this can be expressed in terms of the value of the marginal product: the marginal

product times the price of output. Focusing on capital, equating VMPK is a necessary

condition for productive efficiency, and is a sufficient condition under concavity.

Our first main result expresses misallocation as a function of the variance of log VMPK.

Under CES aggregation, the cost of misallocation is given by

L ≈ 1

2
EVar (log VMPKi)

where E is the (negative) elasticity of firm output with respect to the wedge, and L is the

potential gains, in terms of log aggregate output, from optimally reallocating inputs. We

show that this result is exact for log-linear production functions with log-normally distributed

productivity and wedges, and holds more generally as a second-order approximation for

arbitrary production functions. We also highlight that E depends critically on what inputs

can be reallocated. If only capital can be reallocated, then decreasing returns to scale will

make E small. If other inputs can also be reallocated, then E will be larger,3 and thus the

gains from reallocating inputs will also be larger.

Although production efficiency depends on the the distribution of VMPK across firms, in

practice we typically do not observe separate data on prices and quantities. Thus, the best

we can hope to do is to estimate MRPK: the derivative of revenue with respect to capital.

In general, MRPK will be less than VMPK because an increase in capital increases output

and thus decreases the price of the firm’s output. Fortunately, we show that under CES

aggregation, VMPK and MRPK are proportional to each other. Under CES demand the

variance of log VMPK is thus the same as variance of log MRPK, and so we can focus on

measuring the latter.

2.1 Setup

We begin by describing a fairly general production economy. We will focus throughout on

horizontal economies: many firms produce intermediate goods, drawing from a common pool

of inputs and supplying intermediates to an aggregator that creates the final good. We focus

on this economy because it is the benchmark economy in the literature, and because it is a

fairly accurate description of our setting, in which microenterprises produce similar products

3This is a consequence of Le Chatelier’s principle: the elasticity of output to the wedge is larger when all
inputs can adjust.
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for final consumption).4 We will focus on single product firms, and we will consider a single

input (we call this input capital) unless otherwise noted.5

There is a unit mass of firms indexed by i ∈ [0, 1]. Each firm has an individual production

function:

yi = fi (ki) (1)

The final good, Y , is aggregated by an aggregator:

Y = Y
(
{yi}i∈[0,1]

)
(2)

The final good aggregator can be viewed as the production function of a final good producer

or as the utility function of a representative household: both formulations are mathematically

identical. We will assume that the individual production functions, as well as the aggregator,

are smooth. Moreover, we will assume throughout that any expectation we take exists: for

example, we will assume that the variance of marginal products exists and is finite.

There is also an aggregate supply of the homogeneous input, capital. We define aggregate

capital as:

K :=

∫ 1

0

kidi = E [ki] (3)

Following the literature on misallocation, we will focus on counterfactuals in which aggregate

inputs are held fixed. This allows us to focus on the production side of the economy:

modeling an elastic input supply would require a model of household’s preferences to supply

that input.6 Focusing on the losses from misallocation under fixed aggregate inputs will

provide us a lower bound on the full cost of misallocation: the welfare gains from optimally

reallocating inputs under the constraint that aggregate capital is held fixed must be less than

or equal to the gains from selecting the unconstrained optimum allocation.

2.2 Marginal Products Are Equalized Across Firms In Efficient

Economies

To study efficiency in this setting, we set up the planner’s problem. The planner allocates

capital among the firms to maximize the quantity of the final good, subject to the supply

4Different network structures of production will in general imply different levels of misallocation (see
Baqaee and Farhi, 2020).

5Treating capital as the only input implies that we are holding other inputs fixed: implicitly, fixed inputs
are treated as part of productivity.

6This has the potential to be especially complicated for capital, since capital is accumulated over time
and would require a dynamic theory of investment and savings.
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constraint:

max
{ki}i∈[0,1]

Y
(
{fi (k)}i∈[0,1]

)
(4)

s.t.E [ki] = K̄

The planner’s problem yields the first order condition:

dY

dyi
· dyi
dki

= r ∀i (5)

where r is the Lagrange multiplier on the supply constraint. The above is a necessary

condition for efficiency. It also implies that dY
dyi

· dyi
dki

= dY
dyj

· dyj
dkj

, for all i and j.

To build intuition, consider the case where firms produce homogeneous products. In this

case, the aggregator is simply Y =
∫ 1

0
yidi. It is well known that in this setting, efficiency

requires equalizing the marginal product of capital (MPK) across firms. If firm i had a

higher MPK than firm j, then a planner could increase output, without changing inputs, by

taking a small amount of capital from j and giving it to i. Equalization of marginal products

is a necessary condition for efficiency in the homogeneous-products setting, and becomes a

sufficient condition for efficiency (conditional on a level of aggregate capital) if production

functions are concave.

Introducing Prices and the Value of the Marginal Product of Capital (VMPK).

We can simplify this condition by introducing prices. Let P be the price of the final good,

and pi be the price of the good produced by firm i. If the aggregator is a profit-maximizing

firm, then its objective function is given by PY −E [piyi]. If the aggregator is a representative

consumer, then it maximizes consumption, Y , subject to a budget constraint E [piyi] ≤ W .

These problems are of course the same, and yield equivalent first-order conditions.

Suppose that the aggregator takes prices as given. Then, from the first-order condition,

we can show that pi = P · dY
dyi

. Define the value of the marginal product of capital (VMPK)

as the price times MPK. That is,

VMPKi := p · dyi
dki

= P · dY
dyi

· dyi
dki

(6)

It follows that equalization of VMPK across firms is a necessary condition for efficiency.

Under appropriate concavity assumptions and along with the supply constraint, equalization

of VMPK across firms would also be sufficient for efficiency.

This analysis is simple, but reveals a fundamental fact about the nature of misallocation.

10



Marginal products are equalized across firms in efficient economies. In horizontal economies

with a price-taking aggregator, this can be expressed precisely as requiring VMPK to be

equalized across firms. It is thus natural to assume that the cost of misallocation will be a

function of the dispersion of VMPK. We next turn to derive the relationship between the

distribution of VMPK and the cost of misallocation.

Wedges Rationalize Deviations from Efficiency. To rationalize variation in VMPK,

we will introduce the notion of a wedge, µi. The wedge is a distortion of the planner’s

first-order condition for the firm. Letting r denote the price of capital that clears the input

market, this yields the distorted first-order condition:

pi ·
dyi
dki︸ ︷︷ ︸

VMPKi

= r · µi︸︷︷︸
Distorted Marginal Cost

(7)

In a competitive market without distortions, µi = 1. More generally, the first-order condition

can be distorted by a variety of factors, such as market power, credit constraints, taxes, and

other market imperfections.

A few points are worth special note. First, note that, by the first welfare theorem, the

wedgeless economy is efficient, and achieves the highest possible Y given K.7 Moreover, if

we double all of the wedges and halve the interest rate r, then no allocations will change.

Y
(
{µi}i∈[0,1]

)
will be homogeneous of degree zero.

Second, note that although we will refer to pi and r as prices, our analysis in this sub-

section does not actually depend on the existence of markets where prices can be observed.

In fact, all of our aggregation results would be the same if we simply defined pi =
dY
dyi

and

defined r solely as the Lagrange multiplier that implements market clearing in the input

market. Instead, we use this notation to highlight the connection between our aggregation

results and markets, and to connect to our later measurement results.

Finally, note that the wedge is defined in Equation 7 as a distortion of the planner’s first-

order condition for the firm, rather than of the firm’s profit-maximizing first-order condition.

If firms charge markups, then that markup will be included in the wedge, and if markups vary

across firms then that will be reflected as variation in wedges across firms. Our definition

of wedges thus does not require us to make any assumption about firm’s conduct: wedges

could arise due to firms’ market power, or could be a result of perfectly competitive firms

7This result is an immediate consequence of the first welfare theorem because we have defined wedges in
terms of deviations from the (planner’s) efficient first-order condition. Some authors instead define wedges
in terms of the firm’s first-order condition under monopolistic competition, which will also incorporate the
effects of market power. In this case, the wedgeless economy is still efficient, but only in the case of CES
aggregation, since CES induces constant multiplicative markups across firms (Dhingra and Morrow, 2019).
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facing credit constraints. If two sets of market imperfections implement the same allocation

of inputs, then they will imply the same wedges (up to scale). Moreover, under appropriate

concavity assumptions, a set of wedges will implement a unique allocation and prices. Thus,

our wedges (along with technologies and the capital supply constraint) provide a complete

description of the economy, without specifying firm conduct.

2.3 The Cost of Misallocation Depends on the Variance of logVMPK

We have shown so far that misallocation arises when there is dispersion across firms in the

VMPK. We will now show how to map the distribution of VMPK across firms into a cost

of misallocation. In particular, we will show that the cost of misallocation depends on the

variance of log wedges, times one half times the elasticity of output with respect to the

wedge.

For the remainder of our analysis, we will specialize slightly to CES demand. We will

assume that the final good is produced by a constant-elasticity-of-substitution (CES) aggre-

gator:

Y =

(∫ 1

0

y
θ−1
θ

i di

) θ
θ−1

(8)

where θ is the elasticity of substitution across varieties. This aggregator is the standard in

the literature, and ensures that the demand for each firm’s output can be expressed as a

log-linear function of the firm’s price, pi, and aggregate output, Y . Normalizing the price of

the final good, P , to one, we have:

log yi = −θ log pi + log Y (9)

We can characterize the firm’s behavior as a function of supply and demand: Equation

9 charactizes demand for the firm’s output, and the firm’s first order condition (Equation

7) determines the firm’s supply curve. We show this graphically in Figure 1. We plot the

demand curve and the undistorted supply curve in blue, and the response to a wedge in red.

The interest rate and wedge shift the firm’s supply curve, while the firm’s demand curve is

shifted by aggregate output, Y .

The slope of the demand and supply curves determine how much firm output responds

to these shifters. The demand curve will be inelastic if the elasticity of substitution across

varieties, θ, is low. The slope of the supply curve depends on the firms’s (physical) returns

to scale. If the firm faces decreasing returns to scale, then its MPK will fall as it gets larger;

equivalently, its marginal cost rises. The slope of supply thus depends on ϕi, the elasticity

of MPK with respect to output.
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θ log yi +

1
θ log Y

Figure 1: Firm Behavior and Deadweight Loss from Wedges

In order to ensure that the firm’s first-order condition is sufficient to pin down a unique

solution to the firm’s problem, we will impose the following assumption:

Assumption 1. The slope of the firm’s supply curve is everywhere greater than the slope of

the demand curve. That is, ϕi (yi) <
1
θ
, ∀i, ∀yi, where ϕi :=

yi·f ′′
i

(f ′
i)

2 .

With this assumption, we can characterize the firm’s behavior on the margin with the

following Lemma:

Lemma 1 (Firm Behavior on the Margin). Assume the firm faces CES demand. The firm’s

behavior on the margin is described by

d log yi = −Eid log µi︸ ︷︷ ︸
Wedge

−Eid log r︸ ︷︷ ︸
Input Cost

+
Ei
θ
d log Y︸ ︷︷ ︸

Demand

(10)

where Ei :=
(
−ϕi +

1
θ

)−1
is the firm-specific (negative) elasticity of output with respect to the

wedge, and ϕi :=
yi·f ′′

i

(f ′
i)

2 is the firm-specific elasticity of MPK with respect to output.

As we can see graphically in Figure 1, the (negative) elasticity of output with respect

to the wedge, Ei, depends on the slopes of demand and supply. If the firm faces inelastic
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demand (low θ) and low returns to scale (very negative ϕi), then firm output will not change

much in response to the wedge. Later in this section, we will see that these same forces

govern the scope for increasing aggregate output through reallocation of inputs.

The Harberger Triangle. In partial equilibrium, the deadweight loss from misallocation

can also be read off of Figure 1. The pink triangle denotes the deadweight loss arising from

the wedge. This is often known as the Harberger triangle, recognizing the contributions of

Harberger (1954), who analyzed the welfare costs of market power in the United States.8 This

graphical intuition immediately suggests two things. First, the losses from misallocation will

be quadratic in the size of the wedges. Small distortions to an initially undistorted economy

will have approximately zero effect on aggregate output, but the welfare losses can grow

large quickly as the distortions grow. Second, the magnitude of the losses will depend on Ei,
and thus depends on the slopes of supply and demand.

However, the simple graphical analysis in Figure 1 is incomplete, because it only analyzes

the firm’s problem in isolation. To solve for the welfare losses in general equilibrium, we must

also keep track of the interest rate (which affects the firm’s supply curve) and of the price

of the final good (which affects demand). To do this, we will adapt and extend methods

from Baqaee and Farhi (2020) to show how distortions affect aggregate output in distorted

economies.

Welfare Losses in General Equilibrium. We can combine Lemma 1 with the input

market clearing condition (Equation 3) and the aggregator (8) to solve for the marginal

effect of wedges on the final good, Y . We will adopt the notation of Baqaee and Farhi

(2020): they prove a version of our results under constant-returns-to-scale production.910

We next derive how changes in wedges affect aggregate output, Y .

Proposition 1 (Effect of Wedges on Output in the General CES Case). Consider a hori-

zontal economy with CES aggregation. The effect of a change in wedges on aggregate output

is

d log Y = −E [Eiλiµ̂ · d log µi] (11)

8See Hines (1999) for a history of this literature in economics, dating back to almost 200 years to Jules
Dupuit in 1844.

9The results of Baqaee and Farhi (2020) are substantially more general in that they allow for arbitrary
input-output structure. Their formulas can also be modified to capture decreasing returns to scale through
a fixed-factors approach; our results are slightly more general than the fixed-factors approach in that we can
allow for increasing returns to scale (as long as downward-sloping demand ensures that the firm’s objective
remains concave).

10Baqaee and Farhi (2020) distinguish between sales shares, revenue-based Domar weights, and cost-based
Domar weights. Here, those notions are all equivalent because we focus on a horizontal economy, and so we
simply define λi as the sales share.
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where λi :=
piyi∫
piyidi

denotes the sales share of firm i, Ei is the (negative) elasticity of yi to the

wedge µi, and µ̂i :=
µi−µ̃
µi

is the percent deviation of the wedge from the weighted harmonic

average, µ̃ := E[λiEi]
E[λiEiµ−1

i ]
.

To derive a formula for the cost of misallocation, we can integrate d log Y/d log µ along

the path from the distorted to the undistorted economy, taking advantage of the fact that the

wedgeless economy is efficient. Let L := log Y ∗− log Y denote the losses from misallocation.

Define log µ̌ (t) = t · log µ. With some abuse of notation, we have

L = −
∫ 1

0

d log Y (µ̌ (t))

d log µ
· d log µ̌ (t)

dt
dt

= −
∫ 1

0

E
[
d log Y (µ̌ (t))

d log µi

· d log µ̌i (t)

dt

]
dt (12)

= −E
[(∫ 1

0

d log Y (µ̌ (t))

d log µi

dt

)
log µi

]
To approximate this integral up to second order, we can use the trapezoid rule. This tells

us that the integral is approximated by the wedges, log µ, times the average of d log Y (µ̌(t))
d log µ

evaluated at µ̌ = µ and µ̌ = 1. As shown in Bigio and La’O (2020), the envelope theorem

implies that the first-order effect of wedges on output (holding inputs fixed) is zero, so d log Y
d logµ

is zero in the wedgeless economy. Thus, the losses from misallocation are given by:

L ≈ −1

2
· E
[
d log Y

d log µi

log µi

]
(13)

This leads to our main aggregation result.

Proposition 2 (Approximate Formula for the General CES Case). Consider a horizontal

economy with CES aggregation. The cost of misallocation, L := log Y ∗ − log Y , is given by

L ≈ 1

2
E [Eiλiµ̂ log µi]

≈ 1

2
Eλi

[Ei] · VarλiEi (log µi) (14)

where VarλiEi (log µi) is the sales-times-elasticity-weighted variance of the log wedges, and

Eλi
[Ei] is the sales-weighted average Ei.

Misallocation depends on the (weighted) variance of log wedges, and on the (weighted

average) elasticity of output with respect to the wedge. Equivalently, since log VMPKi =

log r+ log µi, misallocation depends on the variance of log VMPK. The discussion earlier in
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this section made clear that VMPK is equalized across firms in efficient economies. Propo-

sition 2 further tightens the connection between dispersion in VMPK and misallocation,

providing us with the relevant moment of the VMPK distribution and the formula to map

that moment to the cost of misallocation. Note also that this weighted variance formula can

be interpreted as the sum of Harberger triangles, with the wedges appropriately centered

around the weighted average wedge.

Special Case: Log-Linear-Log-Normal. Our approximate formula will become exact

in a special case. For this special case, we will specialize to a log-linear (Cobb-Douglas)

production function

log yi = log zi + α log ki (15)

with all firms having the same elasticity of output with respect to capital, α. We will assume

that wedges and productivity are jointly log-normal. That is, we assume that (log zi, log µi)

is multivariate normal.

We will define aggregate productivity as

logZ := log Y − α logK (16)

This formulation is convenient because we will find that when aggregate productivity is

defined this way, we can express aggregate productivity as depending only on the distribution

of individual productivities and wedges, and not on the aggregate supply of capital. Thus,

our results on the effect of wedges on logZ will also tell us how wedges affect Y , holding

aggregate capital K fixed.

Exploiting the assumption of joint log-normality, as well as the log-linearity of the setup,

we obtain the following formula through some manipulations:

logZ = E [log zi]−
1

2
EVar (log µi) +

1

2
E 1

α2
· Var (log zi)−

1

2

1

α
Var (log zi) (17)

where E :=
(
1−α
α

+ 1
θ

)−1
is the (negative) elasticity of firm output with respect to the wedge.

To derive the cost of misallocation, we simply compare Z under the economy with wedges

to Z∗: aggregate productivity in the efficient, wedgeless (meaning µi = 1) economy. This

yields our aggregation result for the special case:

Proposition 3 (Exact Formula for the CES-Log-Linear-Log-Normal Case). Consider a hor-

izontal economy with CES aggregation, log-linear production with a homogeneous elasticity

of output with respect to capital, and log-normally distributed productivity and wedges. The
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cost of misallocation is given by

logZ∗ − logZ︸ ︷︷ ︸
Losses from Capital Misallocation

=
1

2
E · Var (log µi) (18)

where E :=
(
1−α
α

+ 1
θ

)−1
is the (negative) elasticity of output with respect to the wedge.

This shows that our misallocation formula, which was a valid second-order approximation

in the general case, is an exact result in the Cobb-Douglas log-normal case. Moreover, in

the special case, weighted objects coincide with their unweighted counterparts.

Weighted vs. Unweighted Variance. Measuring the weighted variance in the fully

general case requires observing the weights λi · Ei. This is not feasible in practice, since we

do not observe each firm’s Ei. We can go part of the way towards a weighted variance by

using sales weights, which we do in Appendix Table 9. However, our main results focus on

estimating the unweighted variance of log VMPK, rather than the weighted variance.

Under appropriate statistical assumptions about the joint distribution of the weights

and wedges, the weighted and unweighted variance of wedges will coincide (this is true, for

example, in the log-normal special case). In these cases, it will typically be more efficient to

estimate an unweighted variance than a weighted variance. More generally, we suspect that

the difference between the weighted and unweighted variances is unlikely to be too large,

especially compared to the statistical uncertainty of the estimates.

Simulation Results on Accuracy of Second-Order Approximation. Our formula

for the cost of misallocation is exact for a special case, but in general is only accurate

as a second-order approximation. How accurate is that approximation? We explore this

question in Appendix Table 6. We assume a Cobb-Douglas production function, and a

standard deviation of 1.2 for log zi. We take from Section 5 our preferred calibration of θ

and α, and our preferred estimates of the standard deviation of log µi. We explore different

distributions of log µi, including a normal distribution, uniform distribution, and two-point

distribution (as in Restuccia and Rogerson, 2008). We also explore heterogeneous returns to

scale. Throughout, we find that the simulated gains from optimally reallocating capital are

similar to the analytic approximation.

Misallocation with Multiple Inputs. Our main analysis focuses on the case in which

capital is the only input. We do this because we exploit an experiment which identifies the

marginal revenue product of capital. What if there are other inputs, such as labor?

When there are multiple inputs, we can say two things. First, without any additional

assumptions, we can say that our thought experiment identifies a lower bound on the losses
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from misallocation. This is because the problem of optimally allocating capital can be

thought of as part of a larger, nested optimization problem, in which the planner allocates

all inputs. First, let us define the firm’s production function, with only capital as an input,

as the output of its multi-input production function in which other inputs (e.g. labor) are

fixed:

fi (ki; li) := yi (ki, li) (19)

We can then set up the planner’s problem as a nested optimization problem:

Y ∗ = max
{ki,li}i∈[0,1]

Y
(
{yi (ki, li)}i∈[0,1]

)
= max

{li}i∈[0,1]

max
{ki}i∈[0,1]

Y
(
{fi (ki; li)}i∈[0,1]

)
(20)

= max
{li}i∈[0,1]

Y ∗
(
{li}i∈[0,1]

)
In the context of Equation 20, our measure of misallocation focuses on the inner problem

of capital allocation, measuring the benefits of optimally reallocating capital while holding

other inputs (e.g. labor) fixed. These benefits must, necessarily, be at least as large as the

benefits of reallocating not only capital but also other inputs.

Second, under stronger assumptions, we can use the dispersion in the marginal revenue

product of capital to infer the cost of misallocation of all inputs. For this, we need two

assumptions. First, we need that wedges affect all inputs symmetrically: this implies that

distortions take the form of a markup or a “revenue tax.” This allows us to infer the

distortion to other inputs from the distortion facing capital. Second, we need the firm’s

production function to be Cobb-Douglas, and for all firms to have the same relative shares

of each inputs. This second assumption is quite restrictive, but is necessary to safely extend

our earlier results to a multiple input setting.

With these two assumptions, firms may differ in their returns to scale, but they will

all have the same input mix: the revenue tax only distorts scale, and the assumption on

production functions ensures that undistorted firms will all choose the same mix of inputs.

The fact that the input mix is the same at all firms is essential. For example, if firm A was

more labor intensive than firm B, then we could not simply reallocate inputs from A to B:

this would require additional labor, otherwise we would violate the input supply constraint.

By guaranteeing that the input mix is the same at all firms, we can safely reduce the various

inputs that firms use to a single composite input.

We can then apply our previous results. Assume there are are M inputs, with each input

denoted xm,i, and constrain aggregate inputs to be inelastic, E [xm,i] = X̄m. This yields:
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Proposition 4 (Approximate Formula with Multiple Inputs). Consider a horizontal econ-

omy with CES aggregation. Let each firm have a Cobb-Douglas production function log yi =

log zi +
∑

M αm,i log xm,i, where αm,i = α̃m ·∑M αm,i for all firms. Assume that wedges only

take the form of a markup on the firm’s output. The cost of misallocation, L := log Y ∗−log Y ,

is given by

L ≈ 1

2
Eλi

[Ei] · VarλiEi (log µi) (21)

and the firm-specific elasticity Ei is given by

Ei =
(
1−∑M αm,i∑

M αm,i

+
1

θ

)−1

.

In our empirical analysis, we will focus on the benefits of reallocating only capital, keeping

other inputs fixed. However, we will use the formula in Proposition 4 to provide an estimate

of the benefits from optimally reallocating all inputs. As Proposition 4 makes clear, this

requires stronger assumptions than our main results, but strictly weaker assumptions about

production functions than in the standard method. The proposition imposes Cobb-Douglas

production with constant shares, as in Hsieh and Klenow (2009), but our formula allows for

arbitrary heterogeneity in returns to scale across firms.

Extending Results for Microenterprises to Whole Economy. We will exploit an

experiment run on microenterprises, and thus our results will be informative only about the

variance of log wedges for this subset of firms. What implications do these results have for

the overall economy? One route is to model the macroeconomy in a way that allows us to

separate the “microenterprise sector” from other sectors of the economy. For example, if

household demand has a nested CES structure with the microenterprise sector as one of the

nests, and if we hold each sector’s aggregate capital fixed, then our previous results would

tell us how much the aggregate output of the microenterprise sector could increase if we

reallocated capital within sector.

What if we instead allowed for reallocation of capital across all firms, including those that

are not necessarily in the same size category? Since our formula for misallocation depends

in a simple way on the variance of log wedges, it is straightforward to see how the variance

of log wedges for the whole economy depends on the moments of the wedge distribution

for microenterprises. We will simplify by considering a setting where Ei is independent of

(λi, µi), so we can focus solely on the sales-weighted variance of log wedges. Suppose there

are two groups of firms, Small and Big. Define λg as the total share of sales by group g. By
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the law of total variance, we have that:

Varλ (log µi) = λSmall · Varλ (log µi | Small) + λBig · Varλ (log µi | Big) (22)

+
∑

g∈{Small,Big}

λg · (Eλ [log µi | g]− Eλ [log µi])
2

The overall level of misallocation in the economy thus depends on a weighted average of

the weighted variance of log wedges within each group, plus the variance across groups of the

conditional expectation of the log wedge. It follows that the variance of log wedges that we

find among microenterprises provides a lower bound on the overall degree of misallocation:

the overall variance must be at least λSmall · Varλ (log µi | Small). Moreover, if we could

identify the moments of the wedge distribution for large firms in a separate analysis, then

we could easily combine the two estimates to get a measure of the total misallocation in the

economy.

2.4 Under CES Demand, Var (logVMPKi) = Var (logMRPKi)

We have so far shown that the cost of misallocation is a function of the variance of log VMPK.

However, in practice we will not have access to separate data on prices and quantities, and

thus we will measure the marginal revenue product of capital (MRPK) rather than VMPK.

The MRPK is in general lower than VMPK, because the former includes a price effect: when

capital increases, output rises, which lowers revenue. However, under CES demand, MRPK

will be proportional to VMPK, because the price elasticity of demand is constant and the

same across all goods. We have:

MRPKi = pi
dyi
dki

+ yi
dpi
dyi

· dyi
dki

=

(
1 +

d log pi
d log yi

)
· pi

dyi
dki

(23)

=
θ − 1

θ
· VMPKi

This shows us that under CES aggregation, logMRPKi = logVMPKi+log θ−1
θ
. By extension

the variance of log VMPK and of log MRPK are the same. More broadly, this implies that

the variance of log wedges and log MRPK are the same, given the firm’s first order condition

in Equation 7. Note that this relies solely on CES demand and on the final good producer

being a price taker.

We summarize this the following proposition.
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Proposition 5 (Variance of log VMPK and log MRPK Are the Same Under CES). Consider

a horizontal economy with CES aggregation and a price-taking final good producer. In this

economy,

Var (log µi) = Var (log VMPKi)

= Var (logMRPKi) (24)

This result is convenient because it allows us to focus on estimating the variance of log

MRPK, which is something we will show how to measure in the next section. Moreover,

this result is closely connected to a special property of CES demand. Dhingra and Morrow

(2019) show that in CES economies, the monopolistically competitive equilibrium (without

additional distortions) is efficient, despite the fact that firms charge markups. A key reason

for this is that firms charge homogeneous multiplicative markups, and thus equalization of

MRPK implies equalization of VMPK. In CES economies with distortions, the above result

shows that it does not matter whether the wedge is expressed as a distortion to the planner’s

first-order condition (VMPK deviates from the marginal cost) or as a distortion to the firm’s

first-order condition (MRPK deviates from marginal cost): the variance of log wedges is the

same, and thus the implied cost of misallocation is the same.

Alternative with Homogeneous Products. Even without CES demand, we will also

have that Var (log VMPKi) ≈ Var (logMRPKi) if goods are highly substitutable, that is,

if d log pi
d log yi

≈ 0 ∀i. This may be the case in a setting such as the one we study, in which

many microenterprises produce similar products. This provides additional assurance that

our estimates of Var (logMRPKi) are likely to also be estimates of Var (log VMPKi).

3 Measuring Marginal Products with an Experiment

Summary

In the previous section, we showed that the cost of misallocation can be expressed as the

variance of log MRPK, times one half the elasticity of output with respect to the wedge.

We will measure this variance in the data, and then calibrate the elasticity using standard

parameter values.

In this section, we will show how to measure the variance of log MRPK using randomly

assigned grants to microenterpreneurs. In doing so, we recast a a microeconomic question

(“What is the variance of log MRPK across firms?”) as an econometric question (“How can

we conduct valid inference on a particular nonlinear function of parameters from a linear IV
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model?”).

We use the randomly assigned grants as an instrument for capital, solving the problem

that capital is typically endogenous to productivity. We then project MRPK onto observable

baseline characteristics, by using the grants instrument to estimate a linear IV model with

heterogeneous treatment effects by baseline characteristics.

Projecting MRPK onto observables allows us to estimate the variance of the conditional

expectation of MRPK. By the law of total variance, this provides us with a lower bound on

the total variance of MRPK. Moreover, focusing on variation in returns to capital that can

be predicted ex ante ensures that we are estimating misallocation, rather than risk.

Finally, we show how to use standardized principal components to construct an orthonor-

mal basis for the baseline characteristics. We run the heterogeneous linear IV specification

using these principal components as the heterogeneity variables. In addition to being use-

ful for variable selection, this allows us to express the variance as a simple function of the

coefficients from the IV model. In particular, we have that Var (E [MRPKi | Xi]) = γ′γ,

where Xi are the baseline characteristics and γ is the (vector-valued) coefficient on the

interaction between Xi and capital. We also have that SD(E[MRPKi|Xi])
E[MRPKi]

=
√
γ′γ
β

, where β

is the coefficient on capital. Using the log-normal approximation, this yields the formula

Var (logE [MRPKi | Xi]) = log
(
1 + γ′γ

β2

)
, which provides a lower bound on the total vari-

ance of log MRPK.

3.1 Solving the Identification Challenge with an Experiment

We wish to estimate the average MRPK, as well as moments of its distribution across firms.

However, we face an identification challenge: capital is chosen endogenously, and so it will

generally covary with productivity. In order to isolate the effect of capital, we need an

instrument for capital. This instrument needs to affect capital, to be exogenous (e.g. it

cannot be correlated with productivity), and to only affect the outcome through its effect

on capital.

Using Grants as an Instrument. We will use an experiment by de Mel et al. (2008) to

provide this instrument. They run an experiment among a sample of Sri Lankan microen-

treprises, in which they randomly offer grants to some microentrepreneurs in order to fund

capital investment. In addition to the control group, their experiment has four treatment

arms: participants could receive grants as cash or in-kind,11 in the amount of 10,000 or

20,000 rupees. Importantly, the rollout of the treatment was staggered: in the first wave,

11The grant winner would tell the experimenter what inventory and equipment they wished to buy, up to
the size of the grant, and then the research team would buy that capital on behalf of the entrepreneur.
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no firms were treated and they did not have knowledge of the treatment, some firms were

randomly treated between waves 1 and 2, some more firms were randomly treated between

waves 3 and 4, and the control group received 2,500 rupees after wave 5, as a surprise gift

and encouragement to stay in the study.

We will use the grant in this experiment as an instrument for capital. Following de Mel

et al. (2008), we will pool the different arms of the treatment, and instead use the amount of

the grant received as our instrument. The grant affects capital, and by design it is exogenous

(uncorrelated with other shocks, such as productivity).

Using Profits to Isolate the MRPK. Importantly however, we also need our instrument

to satisfy an exclusion restriction. The primary concern here is that the grant will also affect

other inputs, besides capital. This will be a problem because those other inputs also affect

revenue. More concretely, if we take the total derivative and linearize, we have:

piyi = MRPKi · ki +MRPLi · li +MRPMi ·mi (25)

=⇒ piyi − wli − cmi = MRPKi · ki + (MRPLi − w) · li + (MRPMi − c) ·mi (26)

If our outcome is revenue, and the instrument affects other inputs like labor, li, or materials,

mi, then that would result in a violation of the exclusion restriction.

To resolve this issue, we follow de Mel et al. (2008) and use reported profits as the

outcome. In practice, we believe that this means subtracting off the cost of labor and

materials, but not subtracting off a cost of capital.12 In accounting terms, we suspect

that microentrepreneurs answer the profits question by giving their earnings before interest,

depreciation, and amortization (EBIDA).

By using profits as the outcome, we attenuate the bias coming from changes in other

inputs. If the marginal revenue product on other inputs is equal to the price of those inputs

(that is, if MRPLi = w and MRPMi = c), then this strategy will eliminate violations of the

exclusion restriction. This assumption is common for materials: many authors, such as Hsieh

and Klenow (2009), use a value-added production function that implicitly assumes materials

are undistorted. In this setting, we have both a theoretical and empirical justification for

this assumption. Based on a simple model of credit constraints, we would suspect that any

distortions for materials are likely to be much smaller than those for capital, since materials

are purchased in smaller amounts on an as-needed basis. Empirically, we can estimate the

12Moreover, the survey asks for profits before payments to the owner, so it is not accounting for any implicit
wage for the owner. However, de Mel et al. (2008) find that attempting to adjust profits by subtracting off
an implicit wage for the owner does not meaningfully affect estimates of returns.
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average marginal revenue product of materials using the following regression:

Revenueit = β ·mit + αi + δt + εit

where Revenueit is reported real revenue at firm i in time t, mit is materials (we compute

materials as the difference between revenue and profits). As in de Mel et al. (2008), we use

the cumulative amount of the grant received by firm i at time t as our instrument. This

yields a point estimate of 1.18 for the marginal revenue product of materials, with a firm-

clustered standard error of 0.07. Note that this estimate is biased upward: the instrument

also increases capital, and so the true marginal revenue product of materials is lower than this

estimate. Since an undistorted firm would have an MRPM of one (one rupee of materials

increases profits by one rupee on the margin), this is strong evidence that any materials

wedges are small in this setting.

For labor, we will instead rely on the fact that labor does not seem to respond much to

the treatment. As a result, de Mel et al. (2008) find that accounting for the effect of the

treatment on labor does not seem to meaningfully affect the estimated returns to capital,

for plausible values of MRPLi.

3.2 Projecting Onto Baseline Characteristics Provides a Lower

Bound for the Total Variance

To estimate the returns to capital, de Mel et al. (2008) estimate the following linear IV

model:

Profitit = βkit + αi + δt + εit (27)

where Profitit is real profits,
13 kit is capital, and the excluded instrument, Zit, is the cumu-

lative amount of the grant that the firm i has received by time t. Note that the time fixed

effects are necessary for identification in this setting, since the treatment was staggered over

time, and is thus correlated with the time fixed effect.

We modify this homogeneous model to estimate heterogeneous returns to capital based

on the firm’s baseline characteristics. Let Xi denote characteristics of the firm measured at

baseline: these characteristics are measured before the treatment is announced, and thus are

not affected by the treatment. We can estimate heterogeneous effects by interacting capital

with these covariates. We estimate the following heterogeneous linear IV model:

Profitit = βkit + γ′Xi × kit + αi + δt + δX′
t Xi + εit (28)

13We adjust profits for inflation, as in the original paper.
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where the excluded instruments are now Zit and Zit × Xi. Note that in order to ensure

identification, we must now control for interacted time fixed effects, δX′
t Xi. This is an

extension of the earlier issue for the homogeneous model: the instrument is correlated with

time, and therefore the instrument interacted with a baseline characteristic is correlated with

that baseline characteristic interacted with time. Once we condition on these interacted fixed

effects, Zit and Zit ×Xi are uncorrelated with the residual εit.
14

Once we know the parameters of the above model, we can estimate the distribution

of E [MRPKi | Xi], the expected returns to capital given covariates Xi. For example, it is

straightforward to compute the variance of expected returns to capital: Var (E [MRPKi | Xi]) =

Var (γ′Xi) = γ′Var (Xi) γ. In contrast, we cannot compute the distribution of MRPKi: in

general, it is not possible to compute the distribution of treatment effects without imposing

additional assumptions.

Fortunately, we can use the variance of expected returns as a lower bound on the total

variance. The law of total variance states

Var (MRPKi) = Var (E [MRPKi | Xi]) + E [Var (MRPKi) | Xi] (29)

Since the expectation of the conditional variance, E [Var (MRPKi) | Xi], cannot be negative,

this implies that the variance of expected MRPK is a lower bound on the total variance of

MRPK. We will focus on estimating this variance, and use it to provide a lower bound on

the cost of misallocation. Our estimates are thus conservative, in the sense that we will only

a capture a portion of the full dispersion in MRPK.

Although our estimates provide a lower bound on the variance of MRPK, our aggregation

results are actually stated in terms of the variance of log MRPK. To estimate the variance

of log MRPK, we will use an approximation based on the lognormal distribution. If MRPK

is lognormally distributed, then we can back out the variance of log MRPK from the coeffi-

cient of variation for MRPK (the standard deviation divided by the mean). Then, we have

Var (logMRPKi) = log
(
1 + Var(MRPKi)

E[MRPKi]
2

)
. This formula is convenient because we can replace

Var (MRPKi) with Var (E [MRPKi | Xi]), and still be sure that the formula gives us a lower

bound on the total variance of log MRPK.15

14Whenever one estimates a model with an interaction with Xi, the model needs to include a main effect
for Xi. Here, that main effect is absorbed by the interacted fixed effects, and also would be absorbed by the
firm fixed effects.

15An alternative approach would have been to compute Var (logE [MRPKi | Xi]) in sample, using the
estimated β and γ. However, this approach has three problems. First, this approach does not necessarily
recover a lower bound on Var (logE [MRPKi | Xi]), since it is not the variance of the conditional expectation
of log MRPK (it is the variance of the log of the conditional expectation). Second, for certain values of
Xi, the estimated expected MRPK may be negative in practice: one cannot take the log of a negative.
Finally, and relatedly, even if all the predicted values of MRPK are positive, this approach is likely to be
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3.3 Standardized Principal Components Turns Var (logMRPKi)

into a Simple Function of IV Coefficients

Our strategy so far provides a formula for the variance of expected returns in terms of both

model parameters and the distribution of covariates: Var (E [MRPKi | Xi]) = γ′Var (Xi) γ.

We can simplify this formula by re-expressing the covariates Xi using an orthonormal basis:

a set of variables that spans the original Xi, but in which the new variables are orthogonal to

each other and each have standard deviation one. Under this new basis, Var (Xi) is simply

an identity matrix, and so Var (E [MRPKi | Xi]) = γ′γ.

We construct this orthonormal basis by using standardized principal components. Prin-

cipal components gives us a set of orthogonal factors, ordered by how much of the variance

of the variables they explain.16 The ordered nature of the factors also has auxiliary benefits

for variable selection: if we wish to instead use a subset of our factors, then principal com-

ponents gives us a natural choice of which ones to use (if we want to only use K covariates,

then we use the first K factors). By standardizing these components, we also ensure they

have mean zero and standard deviation one.

With an orthonormal basis of mean zero variables, we obtain simple formulas for our

objects of interest. We have the following formulas:

Var (E [MRPKi | Xi]) = γ′γ (30)

SD (E [MRPKi | Xi])

E [MRPKi]
=

√
γ′γ

β
(31)

Using the log-normal approximation, we get a formula for Var (logE [MRPKi | Xi]), which

also serves as a lower bound for Var (logMRPKi).
17

Var (logE [MRPKi | Xi]) ≈ log

(
1 +

γ′γ

β2

)
(32)

Var (logMRPKi) ≈ log

(
1 +

Var (MRPKi)

E [MRPKi]
2

)
≥ log

(
1 +

γ′γ

β2

)
(33)

very unstable when some firms have low predicted MRPK, and would be very sensitive to outliers in the Xi

distribution.
16As is standard practice, we also standardize the raw variables before performing principal components.
17In general, Var (logE [MRPKi | Xi]) ̸= Var (E [logMRPKi | Xi]), and so an estimate of the former need

not be a lower bound for the total variance, Var (logMRPKi). We are relying, however, on the log-normal

approximation, under which Var (logMRPKi) = log
(
1 + Var(MRPKi)

E[MRPKi]
2

)
. Since Var (E [MRPKi | Xi]) ≤

Var (MRPKi), we have a lower bound on the total variance of log MRPK.
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3.4 Our Method Solves Many Measurement Challenges

Our method is distinct in two ways: we measure marginal products directly using exogenous

variation in capital, and we project variation in marginal products onto observable charac-

teristics. These distinctive features of our method solve many measurement challenges that

have plagued prior work.

Comparison to Standard Approach. The standard approach to measuring misalloca-

tion, pioneered by Hsieh and Klenow (2009), assumes a Cobb-Douglas production function

and CES demand, and infers marginal products from data on inputs and outputs. Implicitly,

this methodology infers marginal products from average products. For a loglinear produc-

tion function, y = zkα, the marginal product will in general be proportional to the average

product: dy
dk

= αzkα−1 = α y
k
. Note also that under CES demand, firms charge constant

multiplicative markups, and so APK is proportional to PY
K
, and VMPK is proportional to

MRPK. Thus if all firms use a loglinear production function, with the same elasticity of out-

put to capital, α, then the variance of log average products will be the same as the variance

of log marginal products, and the standard approach will recover the correct variance.

However, since the standard approach relies on a homogeneous, loglinear production

function, it will fail if the production function is not homogeneous or not loglinear. For

example, suppose that firms have loglinear production functions with different elasticities,

αi. By our earlier derivation, we have that APKi =
piyi
ki

= 1
αi
·VMPKi. Taking logs, we then

have:

Var (log APKi) = Var (log VMPKi) + Var (logαi)− 2 · Cov (logαi, log VMPKi) (34)

It follows that Var (log APKi) will generally not measure Var (log VMPKi) in an environment

with loglinear production functions that have different elasticities, since it will mix up true

variation in VMPK with variation in αi (for further discussion of this point, see also Halti-

wanger et al. 2018 and Carrillo et al. 2023). In fact, in an allocatively efficient environment,

there will be no variation in VMPK, and Var (log APKi) will simply measure Var (logαi).

Deviations from loglinear production, such as fixed costs, will also cause the standard

approach to fail. Suppose that we have loglinear production with a fixed cost, so yi = zik
α
i −c.

Even if productivity zi is the only part of the production function that varies across firms,

this will cause the standard approach to fail. In this setting, VMPKi = piαzik
α−1
i , and

APKi = 1
α
· VMPKi − pic/ki = 1

α
· VMPKi − c ·

(
VMPKi

αzi

)1/(1−α)

. In this case, average

products are in general not proportional to marginal products. Moreover, like before, other

sources of variation, besides wedges, will drive variation in average products. Variation in
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productivity zi will lead to variation in average products under fixed costs, even if VMPK

is the same for all firms.

In contrast, our method sidesteps this issue because we measure marginal products di-

rectly. By using randomized grants as an instrument for capital, we isolate how a change in

capital on the margin will affect output. We thus do not rely on any assumed relationship

between average products and marginal products.

Flexibility vs. Heterogeneity. The standard approach imposes a homogeneous Cobb-

Douglas production function on all firms. Deviations from these assumptions will cause it to

infer misallocation even in an efficient setting. A natural question is whether the standard

approach can be rescued by estimating a more flexible functional form, such as translog.

Unfortunately, flexibility is in general insufficient to remedy the problem.

To see this, suppose firms use the production function zi · f(ki).18 For expositional

simplicity, we will assume pi = 1 for all firms. Equalization of marginal products implies:

zi = f ′(ki)/r ∀i (35)

=⇒ zi = zj if ki = kj (36)

=⇒ yi = yj if ki = kj (37)

Imposing a fully flexible but homogeneous production function requires that if any two

firms have the same level of inputs, they must also have the same level of output, and any

deviation from this will be interpreted as misallocation. Thus, estimating a flexible produc-

tion will in general be insufficient to ensure robust estimates of the cost of misallocation.

The robustness of our method comes not just from its ability to handle flexible functional

forms, but also from its ability to handle heterogeneous production functions.

Our Method is Robust to Measurement Error. The standard approach measures

the variance of log average products, and is thus very sensitive to measurement error in

inputs or in output. Prior work has shown that accounting for this measurement error has

quantitatively important implications for the measurement of misallocation (Bils et al., 2021;

Gollin and Udry, 2021; Rotemberg and White, 2021). In contrast, classical measurement

error in inputs and outputs will in general have no effect on the consistency of IV estimates

of MRPK. Thus, our method is completely robust to this form of measurement error.

18Here we are allowing limited heterogeneity by allowing for a Hicks-neutral productivity shifter. If we
allowed arbitrary productivity shifters, then we would simply replicate the fully flexible and heterogeneous
model yi = fi(ki).
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Measurement error in our covariates, Xi, will in general lower the usefulness of these

covariates in predicting MRPK. This will lower our estimate of Var (E [MRPKi | Xi]), but

only because it will actually lower the true variance of E [MRPKi | Xi]. Regardless, our

method will still provide a valid lower bound for the variance of MRPK.

We Measure Misallocation Rather Than Risk. Projecting returns onto baseline ob-

servables is useful econometrically, but it also clarifies the economic interpretation of our

estimates. It is important to distinguish between ex ante and ex post variation in returns. If

firms have different expected returns ex ante then we would interpret that as misallocation;

if firms have the same expected returns but different returns ex post, then we would interpret

that as risk rather than misallocation.

In general, economists define efficiency relative to what the social planner could imple-

ment. Since the planner cannot see the future, efficiency depends on equalizing expected

marginal products based on the information available at the time of investment. If invest-

ment is reversible, then this means that efficiency depends on Var (E [MRPKit | Ωt−1]), where

Ωt−1 represents the planner’s information set in t− 1. We think that the baseline variables

we observe as econometricians would also be reasonably be included in the planner’s infor-

mation set. Thus, by the law of total variance, our Var (E [MRPKi | Xi]) will provide a lower

bound on the misallocation-relevant variance of MRPK.

Recent work by David et al. (2022) has highlighted an alternative connection between

risk and misallocation: firms whose returns are risky (in the sense of being correlated with

aggregate risk) may have higher marginal products, reflecting a risk premium. This variation

in expected returns need not reflect inefficiency, since the risk-adjusted returns could be the

same across firms. In principle, our method could be extended to estimate a risk-adjusted

return if we multiplied profits by the appropriate stochastic discount factor (e.g. we could

infer the marginal utility of the representative Sri Lankan household data on aggregate

consumption, and construct risk-adjusted profits using the implied marginal utilities). In

practice, this would likely require a very large number of time periods to estimate consistently.

Our Estimates Are Not Likely to Be Driven by Adjustment Costs. Prior work

on misallocation (Asker et al., 2014; David and Venkateswaran, 2019) has also studied how

adjustment frictions may lead to dispersion in APK and MRPK. A critical distinction be-

tween our approach and prior approaches is that we measure MRPK, rather than APK.

If adjustment costs show up in the data as reduced profits, then adjustment costs are just

another component of the MRPK. In models where adjustment costs are a continuously

differentiable function of the change in capital (i.e., Q-theory models of investment), the

MRPK (including adjustment costs) will not vary across firms in the planner’s solution.
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Here, the critical difference between our approach and the standard approach is that we

estimate MRPK directly, rather than inferring it from the output to capital ratio, and thus

our estimates of MRPK should incorporate adjustment costs.

There are two complications to this story, which can theoretically generate (efficient) dis-

persion in MRPK. First, adjustment cost models where adjustment costs are not continously

differentiable, such as a fixed cost of adjustment or partial irreversibility of investment will

generate inaction regions. This can cause MRPK to differ across firms, even in the planner’s

solution.

Second, in models with adjustment costs, the appropriate measure of the MRPK (in-

clusive of adjustment costs) is the effect of capital on the net present value of output, and

so returns to capital over the next month may exhibit some dispersion. For example, the

planner may expect that high productivity firms will have lower productivity in the future,

and thus today’s MRPK may seem higher because the planner anticipates higher adjustment

costs in the future.

However, in practice we would expect these differences to die out over the course of a

two-year experiment. de Mel et al. (2008) find that there is low autocorrelation of profits

among their sample of firms: this is a setting in which a theory based on adjustment costs

would predict that returns should quickly revert to the mean.

In the data, we find that ex ante differences in returns are persistent. In Appendix Table

11, we estimate an alternative model that projects MRPK onto baseline APK, and allows

the covariance of MRPK and baseline APK to vary between the first and second years of

the survey. We find that the projection of returns onto baseline APK yields very similar

coefficients in the first and second year, implying that differences in returns are persistent.

This suggests that adjustment costs are unlikely to explain a large portion of our estimated

dispersion in returns to capital.

Comparison to Approach in Carrillo et al. (2023). Our approach is most closely

related to recent work by Carrillo et al. (2023). Our work differs from theirs in a number of

ways: we study a different setting (Sri Lankan microenterprises vs. Ecuadorian construction

firms), focus on a different type of shock (grants that shock capital vs. procurement lotteries

that shock demand), and find a different result (we find a sizable cost of misallocation,

while they find little misallocation). Methodologically, our approach differs from theirs in

that we focus on projecting the wedges onto covariates, and estimating the variance of

expected wedges. This produces a lower bound on misallocation, and also ensures that we

are measuring misallocation as opposed to risk.

In contrast, Carrillo et al. (2023) target the total variance of the wedges. Economically,

this does not distinguish between risk and misallocation, and should thus be viewed as an
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upper bound. Since they find low levels of misallocation, an upper bound is useful in their

setting. Since we find substantial misallocation, our lower bound approach is more useful in

our setting.

Econometrically, Carrillo et al. (2023) estimate the total variance of wedges using an

instrumental variable correlated random coefficients model (IV-CRC), following the method

of Masten and Torgovitsky (2016). In order to identify not just the mean but also the variance

of the treatment effects, they run the linear model and then also square the model, in order to

identify E [µi] and E [µ2
i ]. This method relies on the linearity of the model, and also requires

the instrument to have multiple points of support: a binary instrument will be collinear

with its square, and thus cannot separately identify the linear and quadratic endogenous

regressors in their squared model. In contrast, our method will work even in the case of

binary instruments. Relatedly, in order to identify E [µ2
i ], the IV-CRC approach requires that

the instrument is fully independent from the residual, rather than just mean-independent.

Our method relies only on orthogonality (partialling out controls), as is standard for IV

models with interaction effects.

In the setting we study, our method yields substantially more precise estimates than the

IV-CRC approach. In Appendix Table 12, we provide estimates of the total variance of

MRPK using the Carrillo et al. (2023) method in our setting. We find that the resulting

confidence intervals are too wide to be informtive: they include both very large values of

misallocation and zero misallocation. Whether our method is also more efficient in other

settings will likely depend on how useful baseline covariates are in predicting MRPK.

Broadly, we view the two papers as complementary: Carrillo et al. (2023) provide a

method to target the total variance of wedges, which provides an upper bound, while we

provide a method to target a component of the variance of wedges that can be predicted by

baseline covariates, which provides a lower bound. Future work may find it useful to use one

or both methods, depending on the setting.

4 Inference for Nonlinear Functions of Parameters

Summary

We have shown that the variance of the log of expected MRPK can be expressed as a

nonlinear function of the parameters of a linear IV model, estimated using an experiment that

randomized grants to microenterprises. This provides a lower bound on the total variance of

log MRPK and, combined with a calibration of the elasticity of output with respect to the

wedge, provides an estimate of the cost of misallocation. In this section, we show how to
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conduct valid inference on nonlinear functions of parameters, which allows us to construct

confidence sets for our measure of the cost of misallocation using experimental data on firms.

Given asymptotic normality of the IV coefficients, i.e.
√
n(δ̂−δ0)

d→ N(0,Σ), the standard

approach to inference on a nonlinear function of these coefficients would be to use the delta

method. For a continuous function g(·), the delta method approximates the distribution of

g
(
δ̂
)
as N (g(δ0),∇g′Σ∇g). In our setting however, where g(δ) =

√
γ′γ/β, this derivative

can be close to zero whenever there is little predictable heterogeneity in marginal products,

and can be very large when the average returns to capital are low. This means that the delta

method can provide a poor approximation to the distribution of our parameter of interest.

In simulations calibrated to our setting, we show that tests based on the delta method suffer

from severe size distortions.

An alternative approach is to construct a confidence set using the projection method, i.e.

by first constructing a joint confidence set for δ, and then including in the confidence interval

for g every value of g (δ) corresponding to a value of δ in the confidence set. In general this

method will be conservative, resulting in overly wide confidence intervals, particularly as the

dimension of δ grows.

We suggest an alternative simulation-based approach for generating critical values. The

method performs very well in simulations calibrated to the data: it provides correct coverage

across a range of true parameter values, while retaining good power properties. We first

explain the procedure, and then apply it to construct confidence intervals for the cost of

misallocation.

4.1 Inference Procedure

Our proposed method uses simulation to construct critical values for test statistics, rather

than relying on the asymptotic approximations given by the delta method. To describe the

method, suppose that we observe a vector of parameter estimates for which
√
n(δ̂ − δ0)

d→
N (0,Σ), and are interested in testing the null hypothesis H0 : g(δ) = τ0, for some continuous

function g. Then, given some chosen test statistic T̂ = T (δ̂, τ0) we can simulate its asymptotic

distribution under the null by drawing δ∗ ∼ N (δ0,Σ/n) and constructing the corresponding

statistic T (δ∗, τ0). Quantiles of the simulated distribution can then be used to construct

critical values for testing the null hypothesis.

The test statistic we propose is the minimum distance statistic

T (δ̂, τ0) = min
δ:g(δ)=τ0

n(δ − δ̂)′Σ̂−1(δ − δ̂) (38)

The statistic is intuitive in the sense that it measures the extent to which the data disagrees
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with the null hypothesis, taking into account our relative uncertainty about each element

of δ̂. Implementation of the test requires knowledge of the true parameter vector δ0 and its

covariance matrix Σ. We replace these with estimated values that are consistent with the

null hypothesis. A constrained estimator δ̄ is given by the solution to

δ̄ = arg min
δ:g(δ)=τ0

n(δ − δ̂)′Σ̂−1(δ − δ̂),

and a corresponding constrained covariance matrix Σ̄ can be constructed using δ̄. Given

the constrained estimates, we can simulate a p-value for the test statistic by taking some

large number of draws δ∗b ∼ N (δ̄, Σ̂) and computing the proportion of simulated statistics

T (δ∗b , τ0) that exceed the observed test statistic, i.e.

p̂τ0 =
1

B

B∑
b=1

1
{
T (δ∗b , τ0) ≥ T (δ̂, τ0)

}
.

A corresponding confidence set is then easily constructed by inverting the resulting test, i.e.

collecting the set of τ for which p̂τ ≥ α so that we cannot reject the null hypothesis. The

procedure is summarized in the following algorithm.

Algorithm 1. Confidence interval for τ (non-uniform version)

1. Estimate the IV regression to obtain parameter estimates δ̂ = (β̂, γ̂′)′ and variance

matrix Σ̂

2. Set a null hypothesis H0 : τ = τ0:

(a) compute the constrained parameter estimate δ̄ and the constrained variance matrix

Σ̄,

(b) compute the test statistic

T (δ̂, τ0) = min
δ:g(δ)=τ0

n(δ − δ̂)′Σ̄−1(δ − δ̂),

(c) for b = 1, . . . , B, simulate δb ∼ N(δ̄, Σ̄) and compute the statistic

T ∗
b (δb, τ0) = min

δ:g(δ)=τ0
n(δ − δb)

′Σ̄−1(δ − δb),

and set the critical value c1−α(τ0) as the (1− α)-quantile of T ∗
b (δb, τ0)

(d) reject H0 : τ = τ0 if T (δ̂, τ0) > c1−α(τ0)
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3. Repeat step 2 for a grid of τ0 values and collect the set of τ0 for which the test does not

reject

Ĉ1−α = {τ : p̂τ ≥ α}.

The following proposition establishes the asymptotic validity of the procedure for fixed

δ0 (see Appendix B for proof).19

Proposition 6. Assume that
√
n(δ̂ − δ0)

d→ N (0,Σ) where Σ is a positive definite matrix,

and that Σ̂
p→ Σ and Σ̄

p→ Σ. Suppose that we wish to test either the null hypothesis

H0 :
√
γ′γ = τ0 or H0 :

√
γ′γ/β = τ0, for any γ0 and β0 ̸= 0. Then, letting B → ∞ and for

any α ∈ [0, 1], we have that Pr(p̂τ0 ≤ α) → α as n → ∞.

The test remains valid under two distinct regimes. When γ0 ̸= 0, the simulated distri-

bution converges to a chi-squared distribution with one degree of freedom under the null

and so is asymptotically equivalent to the delta method. In contrast, when γ0 = 0 (and

the delta method fails), the simulated distribution converges to the chi-squared distribution

with dim(γ) degrees of freedom, and is equivalent to the Wald test for the null hypothesis

γ0 = 0. While the procedure is not uniformly valid over δ, we show in simulations calibrated

to our empirical setting that the test has good size control across a range of parameter set-

tings.20 In particular, it performs well even for γ close to (or equal to) zero, where the delta

method performs poorly. As another advantage, the test is invariant to parameterization of

the null hypothesis, since it depends only on the restricted parameter space. In contrast, the

delta method is known to be sensitive to parameterization and delivers different results for

different choices, e.g. H0 :
√
γ′γ = βτ0 versus H0 :

√
γ′γ
β

= τ0.

Remark 1. The method proposed here is distinct from an alternative simulation based ap-

proach that simulates δ∗ ∼ N (δ̂, Σ̂), constructs the corresponding distribution for τ ∗ = g(δ∗),

and takes the α/2 and (1−α/2) quantiles of this distribution as a confidence set. Although

straightforward, and perhaps deceptively intuitive, this approach does not deliver valid con-

fidence sets in many settings, as highlighted by Ham and Woutersen (2013).21 In fact, it

can deliver zero coverage in some cases, for example when g(δ) = δ′δ and δ0 = 0 we have

g(δ∗) > g(δ0) = 0 with probability one so that the confidence set will have coverage zero.

Instead, our method simulates the distribution under the null hypothesis, and constructs

confidence sets by inverting the resulting test.
19For testing H0 :

√
γ′γ/β = τ0 we exclude β0 = 0 from the parameter space since the parameter of

interest is not well-defined in this case.
20See Appendix B for a discussion on uniformly valid inference in this setting.
21Ham and Woutersen (2013) present a simulation based approach for confidence sets which essentially

recovers the projection confidence set, which can be useful in settings in which the projection set is otherwise
difficult to compute. As discussed above, this procedure is generally conservative. They also propose an
adjustment based on linear approximation to the function g that can reduce conservativeness of the interval.
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Remark 2. Our method for constructing critical values could be applied to alternative test

statistics. For example, we might use the distance between our estimated parameter of

interest and its null value |τ̂ − τ0|, rather than measuring distance in terms of the underlying

parameter vector δ. We choose the distance metric statistic in order to improve the power

of the test. For example, it can be the case that T (δ̂, τ0) is large even when |τ̂ − τ0| is small

since the distance T (·, τ0) takes into account the relative precision in which we estimate δ in

different directions.

4.2 Simulation evidence

Here we provide the results of simulations that are calibrated to our empirical setting. We

simulate an IV model with treatment Dit and outcome Yit according to

Yit = βDit + γ′Dit ×Xi + σY (ρeit +
√

1− ρ2uit)

Dit = αZit + π′Zit ×Xi + σDeit

where eit and uit are both independent standard normal variables. The instrument Zit and

covariates Xi are held fixed and taken from the empirical data – they are the grant and the

first four principal components of firm baseline characteristics. All parameters in the model

are set equal to their estimates using the empirical data, except where noted.

We run simulations under four settings, in which the model parameters are rescaled so

that
√
γ′γ = {0.1, 0.01} and β = {0.1, 0.03}. These choices are intended to represent settings

in which the nonlinearities from either the quadratic form in γ or from division by β are

weak or strong. Table 1 reports the mean, median, 5th percentile and 95th percentile of

the point estimates, relative to their true values. The distributions of point estimates are in

general positively biased and skewed – this is particularly true for the ratio parameter when

β is small.
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Table 1: Simulated point estimates√
γ̂′γ̂ −

√
γ′
0γ0

√
γ̂′γ̂/β̂ −

√
γ′
0γ0/β0√

γ′
0γ0 β0 Mean Median 5% 95% Mean Median 5% 95%

0.1 0.1 0.01 0.01 -0.03 0.04 0.15 0.07 -0.28 0.58

0.1 0.03 0.01 0.01 -0.03 0.04 0.47 -0.17 -10.17 14.38

0.01 0.1 0.04 0.03 0.01 0.07 0.38 0.26 0.06 0.73

0.01 0.03 0.04 0.03 0.01 0.07 1.50 0.79 -3.73 6.07

Notes: This table shows the mean, median and 5th and 95th percentiles of the simulated distribution of point estimates relative

to their true value. Each row corresponds to a different calibration of the model’s true parameters. Results are for 1000

simulations.

Table 2 reports the rejection rates for tests under the null hypothesis for each of the four

simulation settings. Three tests are compared: a Wald test for H0 :
√
γ′γ
β

= τ0; a Wald test

for the null H0 :
√
γ′γ = βτ0; and our proposed simulation-based test in Algorithm 1.22 In

the first row, both
√
γ′γ and β are well separated from zero, so that all tests have size at or

below the nominal level, although W1 appears to under-reject. In the second row, β is close

to zero so that the first Wald statistic (which divides by β) over-rejects. In the final two

rows,
√
γ′γ is close to zero. In this case both W1 and W2 have poor coverage, with rejection

rates around twice the nominal level. The simulated statistic T has approximately correct

size in all four cases, highlighting its robustness to settings in which the delta method fails.

Table 2: Simulated rejection rates

10 % rejection 5 % rejection√
γ′γ β W1 W2 T W1 W2 T

0.1 0.1 0.058 0.082 0.098 0.021 0.045 0.052

0.1 0.03 0.150 0.077 0.094 0.102 0.041 0.050

0.01 0.1 0.198 0.186 0.109 0.109 0.099 0.053

0.01 0.03 0.068 0.202 0.104 0.037 0.101 0.045

Notes: This table shows simulated coverage rates for g (β, γ) =

√
γ′γ
β

. Each row corresponds to a different calibration of the

model’s true parameters. The cells show the share of simulations in which the test statistic (falsely) rejected the null, for a

nominal 10% test and for a nominal 5% test. The columns labeled W1 correspond to the Wald statistic for the null hypothesis

H0 :

√
γ′γ
β

= τ0. The columns labeled W2 correspond to the Wald statistic for the null hypothesis H0 :
√
γ′γ = βτ0. The

columns labeled T correspond to our proposed simulation-based test.

22We use B = 1000 draws from the simulated distribution to compute critical values
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5 Empirical Estimates of the Cost of Misallocation

Summary

In the preceding sections, we developed a methodology to measure the cost of misallocation,

exploiting experiments in order to measure the variance of log MRPK. We now put those

tools to work.

Our estimates suggest, for a sample of Sri Lankan microenterprises, the variance of log

MRPK across firms is substantial. Our point estimates suggest a (lower bound) variance

of log MRPK of roughly 93 log points. Using our novel econometric tools, we find that

90% confidence intervals rule out values below roughly 20 log points, while 95% confidence

intervals rule out values below roughly 16 log points.

To feed these estimates into our aggregation formulas, we select a standard calibration

for the CES parameter, θ = 3, and provide two calibrations for the elasticity of output to

capital, α = 1
3
and α = 1. We validate these values using parametric estimates of firms’

returns to scale. The first calibration corresponds to a standard value for the capital share,

and is useful for a thought experiment in which capital can be reallocated but other inputs are

fixed. The second calibration corresponds to a constant-returns-to-scale production function,

and is useful for a thought experiment in which all inputs can be reallocated. Focusing on the

point estimates, we find that optimally reallocating capital only would increase output by

22%, while optimally reallocating all inputs would increase output by 301%. These estimates

are sizable, implying that misallocation plays an important role in determining aggregate

productivity, and that input markets are meaningfully inefficient in this setting.

5.1 Estimates of Heterogeneous MRPK

We begin by estimating heterogeneous MRPK across different firms. For our vector of

baseline covariates, Xi, we use seven variables, all measured in the baseline: capital, profit,

business age, owner’s education, owner’s hours worked, average product of capital, and the

log of the average product of capital. Throughout, we use standard errors and confidence

intervals that cluster at the firm level.

We begin by estimating the homogeneous linear IV model in Equation 27, replicating

the main results in de Mel et al. (2008). This provides us with a homogeneous estimate of

the MRPK for all firms, which under appropriate assumptions will be the average MRPK.23

23In general, this IV model will identify a local average treatment effect, which may differ from the average
treatment effect to the extent that the first stage (the effect of the grant on capital) covaries with the firm’s
MRPK. de Mel et al. (2008) argue that, in this setting, the LATE and ATE are likely to be similar.
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Table 3: Estimates of Heterogeneous MRPK by Baseline Covariates

Panel A, without Covariates: E[MRPKi]

Estimate 0.061 SE (0.024)

Covariate Capital Age Education Profit Hours APK log(APK)

Panel A, with Covariates: E[MRPKi]

Estimate 0.062 0.061 0.060 0.063 0.072 0.085 0.069

SE (0.025) (0.024) (0.027) (0.025) (0.030) (0.029) (0.027)

Panel B: SD
(
E[MRPKi|Xi]

)
, With Sign of Interaction Effect

Estimate -0.070 +0.018 +0.044 -0.011 -0.023 +0.128 +0.052

90% CI [0.03, 0.64] [0.00, 0.83] [0.02,∞] [0.00, 0.13] [0.00, 1.06] [0.06, 0.22] [0.02, 0.11]

Panel C: SD
(
E[MRPKi|Xi]

)
/E[MRPKi]

Estimate 1.121 0.300 0.723 0.171 0.314 1.505 0.747

90% CI [0.41,∞] [0.00, 0.90] [0.30, 1.76] [0.00, 3.49] [0.00, 0.63] [0.84, 2.48] [0.38, 1.35]

Notes: This table shows estimates of heterogeneous models of MRPK. All standard errors and confidence intervals are clustered

at the firm level. The first row in Panel A shows estimates from Equation 27; a homogeneous model without covariates. The

rest of the table show estimates from the heterogeneous model described in Equation 28; each column uses one covariate, which

is measured at baseline. The second part of Panel A shows the E [MRPKi] implied by these heterogeneous models, which is

computed as β̂+ γ̂E [Xi]. Panel B shows estimates of SD (E [MRPKi | Xi]), as well as 90% confidence intervals computed using

Algorithm 1. The sign of the interaction term is indicated by a plus or minus sign in front of the estimate; however, the confidence

interval is for the unsigned standard deviation. Panel C shows the implied estimate of SD (E [MRPKi | Xi]) /E [MRPKi], as

well as 90% confidence intervals computed using Algorithm 1. Where the confidence intervals have an upper bound of infinity,

this indicates that the largest null tested (2 for Panel B and 5 for Panel C) could not be rejected.
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The results are in Table 3, in the first row of Panel A. The homogeneous linear IV model

yields an average monthly return to capital of 6%.

In the rest of Table 3, we estimate the heterogeneous linear IV model in Equation 28.

Each column uses a single covariate forXi. In Panel A, we compute E [MRPKi] as β̂+γ̂E [Xi].

Our estimates range from 6-8% monthly returns across specifications.

In Panel B, we compute the standard deviation of expected MRPK, or SD (E [MRPKi | Xi]).

Note that in the single covariate setting, this is equal (up to sign) to the standardized co-

efficient γ · SD (Xi), which represents how a one standard deviation change in the covariate

affects the MRPK. We thus denote the sign of the interaction effect by including a plus or

minus sign before the estimate. We provide 90% confidence intervals for Panels B and C,

computed using Algorithm 1 from Section 4.

The strongest predictor of MRPK is the average product of capital at baseline. This is

somewhat expected: under a homogeneous Cobb-Douglas production function, the MRPK

is proportional to APK. However, the fact that the APK in wave 1 is a useful predictor of the

MRPK in later waves also suggests that some component of the firm’s MRPK is persistent

over time.

In Panel C, we compute the implied estimates of SD (E [MRPKi | Xi]) /E [MRPKi]. Note

that these are not our main estimates: in the next subsection, we will use multiple covariates

to predict MRPK, and combine them using principal components. Although the estimates

based on APK are informative, many of these single-covariate confidence intervals cannot

rule out zero misallocation. This highlights the importance of selecting the correct covari-

ates, and/or incorporating multiple covariates in order to get a more precise estimate of

misallocation, as we do next.

5.2 Estimates of Var (logMRPKi)

We now implement our main methodology for estimating the variance of log MRPK. We

estimate Equation 28 using standardized principal components as our covariates Xi. Our

results are in Table 4. Each column corresponds to our estimates using a different number of

factorsK for theXi (e.g. theK = 4 row uses the first four standardized principal components

of the baseline covariates). Each panel follows the same structure as the previous table.

Panel A shows estimates of E [MRPKi]: these are similar to previous estimates, with av-

erage monthly returns ranging from 7-10%. Panel B shows estimates of SD (E [MRPKi | Xi]),

or
√
γ’γ. The point estimates range from a standard deviation of 6% to a standard deviation

of 13%.

Our main focus is Panel C, where we provide estimates of SD (E [MRPKi | Xi]) /E [MRPKi],
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Table 4: Estimates of Variance of MRPK
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Panel A: E[MRPKi] = β

Estimate 0.073 0.075 0.077 0.084 0.080 0.105 0.105

SE (0.026) (0.025) (0.026) (0.027) (0.051) (0.054) (0.115)

Panel B: SD
(
E[MRPKi|Xi]

)
=

√
γ′γ

Estimate 0.066 0.063 0.109 0.107 0.098 0.131 0.128

90% CI [0.03, 0.11] [0.02, 0.11] [0.04, 0.70] [0.04, 0.53] [0.04,∞] [0.08,∞] [0.05,∞]

Panel C: SD
(
E[MRPKi|Xi]

)
/E[MRPKi] =

√
γ′γ/β

Estimate 0.913 0.840 1.415 1.275 1.234 1.247 1.213

90% CI [0.46, 1.80] [0.21, 1.82] [0.56,∞] [0.52, 3.97] [0.47,∞] [0.78,∞] [0.56,∞]

Notes: This table shows estimates of heterogeneous models of MRPK. All standard errors and confidence intervals are clustered

at the firm level. In Panel A, each column shows estimates from the heterogeneous model described in Equation 28. Each

column uses the first K principal components of our vector of covariates. Panel A shows estimates of E [MRPKi] = β, along with

standard errors. Panel B shows estimates of SD (E [MRPKi | Xi]) =
√
γ′γ, as well as 90% confidence intervals computed using

Algorithm 1. Panel C shows the implied estimate of SD (E [MRPKi | Xi]) /E [MRPKi] =
√
γ′γ/β, as well as 90% confidence

intervals computed using Algorithm 1. Where the confidence intervals have an upper bound of infinity, this indicates that the

largest null tested (2 for Panel B and 5 for Panel C) could not be rejected.

which is computed as
√
γ′γ
β

. In Section 5.5, we will use these estimates to measure the cost

of misallocation. The point estimates are fairly high, and for K > 2 they are all above one.

This implies very sizable dispersion: according to these estimates, a firm that is one standard

deviation below the mean has negative expected returns.

For Panels B and C, we provide 90% confidence intervals based on Algorithm 1. The

lower bound of the 90% confidence interval is fairly high: in Panel C, it is roughly 0.5 for

most values of K. This is of course lower than the point estimates, but still sizable. A firm

that is two standard deviations below the mean would have near zero returns under these

estimates.

We provide additional estimates and confidence intervals in the Appendix. In Appendix

Table 7, we provide 95% confidence intervals, again based on Algorithm 1. These intervals

are wider, but still imply substantial dispersion in returns, except for K = 2. We also

compute uniformly valid confidence intervals using Algorithm 2. We show these intervals

in Appendix Table 8. Although these intervals are modestly wider, they still rule out low

values of SD (E [MRPKi | Xi]) and SD(E[MRPKi|Xi])
E[MRPKi]

, despite the interval for the latter being

somewhat conservative due to projection. The uniformly valid 90% confidence intervals for

K = 5, which are representative of the rest of the estimates, suggest that the standard

deviation of monthly returns is at least 3.1%, and the ratio of the standard deviation over
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the mean is at least 0.387.

We also provide estimates of the weighted variance, using each firm’s baseline profits as

weights. To implement this, we construct our factors using weighted PCA, and standardize

them based on the weighted mean and weighted variance. This provides us with a set

of covariates whose weighted mean is zero, weighted variance is one, and whose weighted

covariance with each other is zero. We then follow the same procedure as before, but use

these weighted covariates to compute estimates and confidence intervals of β,
√
γ′γ, and√

γ′γ/β. Note that although we use the weights to construct the covariates, we still run

an unweighted IV regression. Because the weights are quite skewed, a weighted regression

would be very noisily estimated. Moreover, note that the baseline profit weights are not

quite the same weights as in Proposition 2: that result called for the sales-times-elasticity

weights. In this setting it is not feasible for us to estimate firm-specific elasticities, and so

we cannot use them as weights.

The results are in Appendix Table 9. The weighted variance estimates and confidence

intervals are broadly similar to our main results for the unweighted variance, although they

are somewhat noisier for certain values of K. For all values of K, we are able to rule out

low dispersion. Even for the most unfavorable confidence intervals (K = 2), we can rule out

values of
√
γ′γ/β below 0.35 with 90% confidence.

5.3 Comparison to Other Approaches

In this subsection, we compare our estimates to those from two othe approaches: the “stan-

dard approach” using a homogeneous Cobb-Douglas production function as in Hsieh and

Klenow (2009), and the IV-CRC approach of Carrillo et al. (2023).

Comparison to Standard Approach. We first compare our results to the standard

approach. To do this, we compute the MRPK under the assumption of CES demand and

Cobb-Douglas production, as in Hsieh and Klenow (2009). Under these assumptions, we can

observe MRPK directly from the average product of capital, through the formula MRPKi =

α θ−1
θ
APKi. We use standard values of α and θ: we calibrate α = 1

3
to match the capital share,

and we use θ = 3, following Hsieh and Klenow (2009).24 Throughout, we exclude MRPK

data from the first wave, in order to make them more comparable to our IV estimates. We

do this to make our estimates correspond more closely to the MRPK identified by the grant

24Three is typically considered a low value of θ, and was used by Hsieh and Klenow (2009) because it
gave a conservative estimate of misallocation. The exercise we conduct in this subsection is about measuring
MRPK rather than misallocation per se, and so is less sensitive to the value of θ. A calibration of θ = 3
yields a scaling factor of θ−1

θ = 2
3 , while a calibration where θ → ∞ has a scaling factor of one.
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instrument: in the first wave there is no variation in the grant, and therefore our IV results

were identified only off of later waves.

We begin by computing statistics for the unconditional distribution of MRPK, based on

this Cobb-Douglas calibration. The results are in Panel A of Appendix Table 10. The panel

shows E [MRPKi], SD (MRPKi) /E [MRPKi], and SD (logMRPKi), which we compute using

their sample counterparts. The Cobb-Douglas calibration yields a mean monthly return of

7.8%, which is similar to our IV estimates. For our unconditional estimates of SD (MRPKi)

and SD (logMRPKi), we first partial out wave fixed effects, reflecting the idea that we are

interested in misallocation across firms within the same time period, rather than varying

returns over time. However, this has a trivial effect on our estimates.2526 The unconditional

dispersion is extremely large: the standard deviation is roughly twice the mean. However,

note that the unconditional distribution of returns mixes both ex ante (misallocation) and

ex post (risk) differences in returns, and thus should be viewed as an upper bound on

misallocation.

We then project MRPK onto covariates, so that we can compute SD (E [MRPKi | Xi]).

For each covariate, we estimate a regression analogous to our IV analysis:

MRPKit = γ′Xi + δt + εit (39)

where δt is a wave fixed effect. As before, we exclude data from the first wave to maintain

comparability to our IV results. Excluding the first wave also ensures that our results are not

just mechanical. For example, it must be the case that baseline APK is highly predictive of

MRPK in the first wave, since MRPK was computed as proportional to APK. However, the

fact that baseline APK predicts future MRPK reflects that there is a persistent component

to these variables.

Using our estimates from Equation 39, we compute SD (E [MRPKi | Xi]), as well as

SD (E [MRPKi | Xi]) /E [MRPKi].
27 We show results for individual covariates in Panels B

and C of Appendix Table 10. As before, we indicate the sign of the interaction effect in

Panel B, since the point estimate is also the effect of a one standard deviation change in the

covariate on the MRPK. In Panels D and E, we show results using standardized principal

components as our covariates. For Panels B through E, we provide 90% confidence intervals

computed using Algorithm 1.

25The standard deviation of MRPK is 16.18% if we control for wave fixed effects, and 16.24% if we do not.
26Note also that the decision to exclude the first wave has little effect on these unconditional results:

including the first wave yields a mean return of 8.2% and a standard deviation of 16.8%.
27For this calculation, we compute E [MRPKi] using the subset of firms for which the covariates are non-

missing. Due to a few non-missing firms, this is slightly lower than the E [MRPKi] in Panel A (7.9% rather
than 8.2%).
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These estimates highlight that the unconditional variance of returns is substantially larger

than the predictable component of that variance. The unconditional estimate of the ra-

tio SD (MRPKi) /E [MRPKi] is 2.082. In contrast, the estimates in Panel E suggest that

SD (E [MRPKi | Xi]) /E [MRPKi] is less than half as large, at roughly 0.8. Our confidence

intervals here are tight, suggesting these differences are not driven by sampling error.

Unsurprisingly, our estimates based on a Cobb-Douglas production function are more

precise than those based on an IV regression. Under the strong assumption of a homogeneous

Cobb-Douglas production, MRPK can be observed directly rather than estimated, yielding

smaller standard errors.

However, in part due to significant uncertainty in our IV estimates, we cannot reject

equality between any cell in Table 10 and the corresponding cell in Tables 3 and 4, with

the exception of the cell projecting MRPK onto baseline APK (the Cobb-Douglas point

estimate however is just outside the 90% confidence interval). At the same time, we also

cannot rule out large differences. For example, the IV regression without covariates yields

a point estimate of 6.1% monthly returns. The 95% confidence interval from this regression

includes the 7.8% average monthly return implied by our Cobb-Douglas calibration, but it

also includes values as high as 10.8% and as low as 1.4%.

Comparison to Carrillo et al. (2023) Approach. In Appendix Table 12, we implement

the method of Carrillo et al. (2023) for comparison. We implement three versions of their

estimator: one controlling for the expected size of the grant in a given wave, a second

controlling for both the first and second moment of the grant size in that wave, and one

controlling for wave fixed effects. The three estimates produce similar results, although the

precise point estimate is somewhat sensitive to the controls.

In principle, Carrillo et al. (2023) target the total variance rather than the predictable

component of the variance, and so their estimate provides an upper bound on misallocation

rather than a lower bound. In practice however, their method produces confidence intervals

in this setting that are too wide to be informative. The point estimate for the variance of

MRPK is 0.224 (controlling for the expected first and second moment of grant size), implying

a standard deviation of monthly returns of 47%. Yet the clustered bootstrap standard error

is even larger than the point estimate, and thus the confidence interval also includes zero

misallocation. At least in this setting, our approach provides a substantial improvement in

statistical precision.
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5.4 Selecting E
Our formula for misallocation tells us that we can measure the gains from optimally real-

locating inputs with the formula log Y ∗ − log Y ≈ 1
2
E · Var (logMRPKi). The elasticity E ,

depends on the elasticity of substitution across varieties, θ, and on the elasticity of MPK

with respect to output, ϕ. There are many estimates of θ in the literature. Following the cal-

ibration in Hsieh and Klenow (2009), we will focus on θ = 3; this is a relatively conservative

calibration, and larger values of θ would imply larger levels of misallocation.

The elasticity ϕ measures the curvature of the firm’s production function and can, in

principle, also be measured using the same experimental variation in capital that we exploit.

In practice however, the experiment we study is not well-powered to pick up non-linearity in

the returns to capital.28 To make progress, we base our calibration of ϕ on standard values

for a Cobb-Douglas production function, which we also show are consistent with estimates

from the data. In particular, if we assume a Cobb-Douglas production function f (k) = z ·kα,

then the elasticity ϕ is given by ϕ = −1−α
α

. For a standard capital share calibration of α = 1
3
,

this yields ϕ = −2. We will also explore an alternative constant-returns-to-scale calibration

of ϕ = 0: we use this calibration for our thought experiment in which all inputs can be

reallocated.

We can also estimate returns to scale parametrically in the data, exploiting the randomly

assigned grant. Using the amount of the grant as an instrument, we run the regression:

log Profitit = β · log kit + αi + δt + εit

where profit and capital are defined as before. We can use the regression coefficient β to

identify the returns to scale parameter α in the Cobb-Douglas production function.29 In

particular, we have β = d log py
d log k

=
(
1 + d log p

d log y

)
· d log y
d log k

=
(
θ−1
θ

)
· α. In Appendix Table 13, we

show the results of this regression. We also show the results of a similar regression replacing

log kit with
(
1
3
log kit +

2
3
log lit

)
, measuring lit as total hours worked, which we use to measure

returns to scale for our calibration in which all inputs can be reallocated.

The results of these estimates suggest our calibration is reasonable, and if anything

somewhat conservative. Our point estimates of β are 0.38 (in the only-capital case) and 1.05

(in the capital-and-labor case), implying values of α of 0.57 and 1.58 under our assumed

value of θ. The confidence intervals contain our preferred values, and the point estimates are

in fact somewhat larger than the our calibrated values. We also run sales-weighted versions

28This fact is also noted by de Mel et al. (2008) in their original paper. When we include a quadratic term
in our specification, we cannot reject zero.

29We are assuming here that the production function takes a value-added form, which allows us to treat
profit (which in this context is equivalent to value added) as output.
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of these regressions; the confidence intervals for the weighted versions are wider, but again

contain our preferred values.30

Using the formula E =
(
−ϕ+ 1

θ

)−1
, our main calibration yields E = 3

7
, while our “reallo-

cate all inputs” calibration yields E = θ = 3. The difference in these elasticities reflects the

difference between the two thought experiments. The gains from optimally reallocating all

inputs will in general be much larger than the gains from reallocating only capital. Reallo-

cating only capital quickly runs into diminishing returns on the production side, while the

benefits from reallocating all inputs (under constant returns to scale) are held back only by

downward sloping demand.

We have aimed to be somewhat conservative in calibrating E , e.g. our value of θ is at

the low end of the estimates in the literature, and our values for returns to scale are very

standard. A feature of our analysis, however, is that our formula for misallocation is a simple

and transparent function of E and Var (logMRPKi). Thus, a reader can easily substitute

her own preferred values of θ, ϕ, and/or α, and solve for E by hand. This can easily be

coupled with our estimates of Var (logMRPKi) to compute the cost of misallocation under

the reader’s preferred value of E .

5.5 Implied Estimates of the Cost of Misallocation

Finally, we use our estimates of the variance of log MRPK, along with our calibration of

E , to back out estimates of the cost of misallocation. We summarize the results in Table 5.

Since we generated a range of estimates for
√
γ′γ
β

, based on different numbers of factors, we

focus on results for K = 5, which is fairly representative of the broader set of estimates. We

then use the formula log
(
1 + γ′γ

β2

)
, to provide a lower bound estimate of Var (logMRPKi),

as discussed in Section 3. This gives a point estimate of 93 log points, while the lower bound

of the 90% confidence interval is 20 log points, and the lower bound of the 95% confidence

interval is 16 log points.

Focusing on the point estimates, we find that optimally reallocating capital would increase

output by 20 log points, or 22%. Under the stronger assumptions of Proposition 4, we find

that optimally reallocating all inputs would increase output by 139 log points, or 301%. Our

confidence intervals rule out low values for the gains from reallocating all inputs, although

combining the lower bound of the confidence interval with a low elasticity of E = 3
7
does

yield modest estimates. Overall, we interpret these estimates as suggesting sizable losses

from misallocation of inputs, at least for our sample of Sri Lankan microenterprises.

Our point estimates are large, but not as large as the misallocation implied by the Cobb-

30Our weighted regressions use firm’s baseline profits as the weights.
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Table 5: Estimated Cost of Misallocation (K = 5)

Point Estimate 90% CI 95% CI Cobb-Douglas
√
γ′γ
β

1.234 0.470 0.419 —

Var (logMRPKi) 0.93 0.20 0.16 1.30

logZ∗ − logZ (E = 3
7
) 0.20 0.04 0.03 0.28

Z∗/Z − 1 (E = 3
7
) 0.22 0.04 0.04 0.32

logZ∗ − logZ (E = 3) 1.39 0.30 0.24 1.95

Z∗/Z − 1 (E = 3) 3.01 0.35 0.27 6.03

Notes: This table summarizes point estimates and confidence interval lower bounds for

√
γ′γ
β

, the variance of log MRPK, and

the implied cost of misallocation. We focus on results for K = 5; results for other values of K are similar. The first row

summarizes results for

√
γ′γ
β

, replicating results in Panel A of Table 4. The second row provides a (lower bound) estimate of

Var (logMRPKi), using the formula log
(
1 + γ′γ

β2

)
. The remaining rows provide estimates of the cost of misallocation in log

points, using the formula logZ∗ − logZ = 1
2
E ·Var (logMRPKi). The third and fourth rows are calibrated to reflect the gains

from optimally reallocating capital, while the fifth and sixth rows are calibrated to reflect the gains from optimally reallocating

all inputs, assuming a constant-returns-to-scale production function. For comparison, we also show estimates based on the

variance of log MRPK, computed under the assumption of a Cobb-Douglas production function. As in Table 4, our estimate of

the variance of log MRPK is computed after partialling out wave fixed effects, in order to focus on within-period misallocation,

and uses only data after the first wave, to correspond with the returns captured by the instrument.

Douglas benchmark. Under the assumption of a homogeneous Cobb-Douglas production

function, the variance of log MRPK is 130 log points.31 This implies that optimally real-

locating capital would increase output by 32%, and optimally reallocating all inputs would

increase output by 603%.

Our results do not imply a level of misallocation this large, but they also do not necessarily

rule it out. The confidence interval on our estimates include high values of misallocation.

Moreover, we focus on the predictable component of the variance of log MRPK, thus our

estimates are a lower bound on the total variance. This is somewhat beneficial: we would

not want to label unpredictable variation in MRPK as “misallocation.” However, some

variation in returns may be predictable ex ante, but not captured by our seven covariates.

When we instead compute the predictable component of the variance of MRPK under the

Cobb-Douglas assumption, the estimates are not far from our IV estimates, and in fact are

somewhat smaller (see Panels D and E of Appendix Table 10).

Our results thus do not provide decisive evidence on whether a homogeneous Cobb-

Douglas production function fits the data well. Instead, our results provide robust evidence

for sizable misallocation in this setting, that does not depend on strong auxiliary assumptions

31As in Appendix Table 10, these estimates are for the data after the first wave, and partial out wave fixed
effects.
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about the production function.

6 Conclusion

The misallocation of inputs across firms has been an important area of study in macroeco-

nomics and development. Although some prior work has found large potential gains from

reallocating inputs, the literature has typically relied on strong assumptions about the func-

tional form of production, and other papers have suggested that estimates of misallocation

are sensitive to these assumptions. Understanding the extent to which misallocation of

inputs lowers aggregate productivity may be crucial for understanding large cross-country

differences in output per capita; moreover, the degree to which inputs are misallocated is

fundamental to our understanding of whether markets are efficient in practice.

In this paper, we show how to use experiments to measure misallocation in a credible

way. We show that misallocation can be expressed as a function of the variance of log

marginal products. We then show how to use data from a randomized controlled trial,

which randomized grants to microenterprises, to measure an ex-ante-predictable component

of the variance of log MRPK as a function of the parameters of a heterogeneous linear IV

model. We develop new econometric tools to construct uniformly valid confidence intervals

for this function of parameters. Finally, we apply the tools we develop to estimate the

cost of misallocation for a sample of Sri Lankan microenterprises. We find that optimally

reallocating capital would raise output by 22%, while optimally reallocating all inputs would

raise output by 301%.

Our results highlight the potentially important role played by misallocation in holding

back aggregate productivity. However, our estimates focus on misallocation of inputs among

a sample of microenterprises in Sri Lanka. It is not obvious how these estimates compare to

those for other countries and sectors. Moreover, our design does not capture misallocation

between microenterprises and other firms. If the average MRPK is different for other firms

than it is for microenterprises, this would imply further misallocation. The methodology we

develop can be flexibly applied in other settings where there is exogenous variation in inputs:

future work can use the techniques we develop to deepen our understanding of misallocation

across a range of settings.
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A Proofs for Section 2

A.1 Proof of Lemma 1

Proof. We solve for the firm’s behavior using the firm’s FOC, the firm production function,

and the demand curve faced by the firm. We begin by log-differentiating the firm FOC from

Equation 7. This yields

d log pi = d log µi + d log r − d log f ′
i (ki)︸ ︷︷ ︸
MPK

(40)

To obtain an expression for MPK, we next log-differentiate the production function,

twice.

d log yi = (f ′
i) ·

ki
yi
d log ki (41)

=⇒ yi
f ′
i

· d log yi = kid log ki (42)

d log f ′
i =

d log f ′
i

d log ki
d log ki (43)

= f ′′
i · ki

f ′
i

d log ki (44)

= ϕid log yi (45)

where ϕi :=
yi·f ′′

i

(f ′
i)

2 is the elasticity of MPK with respect to output. Plugging back into the

firm FOC yields:

d log pi = d log µi + d log r − ϕid log yi (46)

We then plug in the demand curve from Equation 9, combining the firm-level demand

and firm-level supply curves:

1

θ
d log Y − 1

θ
d log yi︸ ︷︷ ︸

Firm-Level Demand

= d log µi + d log r − ϕid log yi︸ ︷︷ ︸
Firm-Level Supply

(47)

This yields:

d log yi = −Eid log µi︸ ︷︷ ︸
Wedge

−Eid log r︸ ︷︷ ︸
Input Cost

+
Ei
θ
d log Y︸ ︷︷ ︸

Demand

(48)

where Ei :=
(
−ϕi +

1
θi

)−1

is the negative elasticity of output with respect to the wedge.
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A.2 Proof of Proposition 1

Proof. With Lemma 1 describing firm behavior, we close the system of equations using

input market clearing and the aggregator. First, input market clearing with a fixed supply

of capital requires

E [kid log ki] = 0 (49)

Using the firm’s production function, and then the firm’s FOC (to substitute f ′
i =

riµi

pi
), we

have:

kid log ki =
yi
f ′
i

d log yi (50)

=
piyi
riµi

d log yi (51)

Substituting into our original expression, and multiplying both sides by r
E[piyi] , this yields:

E
[
λi

µi

d log yi

]
= 0 (52)

where λi is the sales share of firm i.

Next, we use our constant-returns-to-scale aggregator to get an expression for d log Y .

Normalizing P = 1, we have that pi = dY
dyi

. Then, using Euler’s homogeneous function

theorem, we have

E [piyi] = E
[
dY

dyi
yi

]
= Y (53)

We can then log-differentiate the aggregator, and then plug this in, which gives us

d log Y = E
[
dY

dyi
· yi
Y
d log yi

]
(54)

= E
[piyi
Y

d log yi

]
(55)

= E
[

piyi
E [piyi]

d log yi

]
(56)

=⇒ d log Y = E [λid log yi] (57)

Finally, we can combine input market clearing (Equation 52) and aggregation (Equation

57), along with firm behavior from Lemma 1, in a way that r falls out. Take Equation 57
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and subtract off C times Equation 52, where C is some constant. We have:

E [λid log yi]− C · E
[
λi

µi

d log yi

]
= d log Y (58)

E
[(

λi − C · λi

µi

)
·
(
−Eid log µi − Eid log r +

Ei
θ
d log Y

)]
= d log Y (59)

To ensure that the interest rate falls out, we must select a C such that E
[(

λi − C · λi

µi

)
· Ei
]
=

0. To do this, we select C = E[λiEi]
E[λiEiµ−1

i ]
. Note also that this C is the weighted harmonic average

of the wedges, which we will denote µ̃ := E[λiEi]
E[λiEiµ−1

i ]
. Let µ̂i :=

µi−µ̃
µi

. We then have:

d log Y = E
[(

λi − µ̃ · λi

µi

)
·
(
−Eid log µi − Eid log r +

Ei
θ
d log Y

)]
(60)

= E
[
λiµ̂i ·

(Ei
θ
d log Y − Eid log µi

)]
(61)

=⇒
(
1− E

[Eiλiµ̂i

θ

])
d log Y = E [−Eiλiµ̂id log µi] (62)

Finally, we will show that E
[Eiλiµ̂i

θ

]
= 0. We have:

E
[Eiλiµ̂i

θ

]
=

1

θ
E
[
Eiλi

µi − µ̃

µi

]
(63)

=
1

θ
E

[
λiEi

(
1− µ−1

i

E [λiEi]
E
[
λiEiµ−1

i

])] (64)

=
1

θ
E

[
λiEi −

λiEiµ−1
i E [λiEi]

E
[
λiEiµ−1

i

] ]
(65)

=
1

θ

(
E [λiEi]−

E
[
λiEiµ−1

i

]
E
[
λiEiµ−1

i

]E [λiEi]
)

(66)

= 0 (67)

Plugging back into our earlier expression, this yields our desired result:

d log Y = −E [Eiλiµ̂id log µi] (68)
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A.3 Proof of Proposition 2

Proof. As described in the main text, we integrate d log Y
d log µ

along a path from the distorted to

the wedgeless economy. We use the trapezoid rule to get an approximation that is accurate

up to second-order:

L ≈ −1

2
· E
[(

d log Y (µ = 1)

d log µi

+
d log Y (µ = µ)

d log µi

)
log µi

]
(69)

= −1

2
· E
[
d log Y

d log µi

log µi

]
(70)

where the second line takes advantage of the fact that, thanks to the envelope theorem,
d log Y
d log µi

= 0 around the undistorted (efficient) economy. Plugging in our formula from Propo-

sition 1, we have

L =
1

2
E [Eiλiµ̂ log µi] (71)

We can turn E [Eiλiµ̂ log µi] into a more intuitive expression using some additional ap-

proximations. First, we will use a first-order Taylor approximation to convert µ̂ into a

function of log wedges.

log µi − log µ̃ ≈ 1

µi

(µi − µ̃) (72)

= µ̂ (73)

=⇒ E [Eiλiµ̂ log µi] ≈ E [Eiλi (log µi − log µ̃) log µi] (74)

Note that since µ̂ was a valid first-order approximation to log µi − log µ̃, and we are then

multiplying by log µi, our new approximation is equivalent to the old one up to second-order.

Next, we will replace the weighted harmonic average, µ̃, with a geometric average that

uses the same weights. We define:

log µ̄ =
E [Eiλi log µi]

E [Eiλi]
(75)

Substituting this into our old expression yields:

E [Eiλiµ̂ log µi] ≈ E [Eiλi (log µi − log µ̄) log µi] (76)

= E [Eiλi] · EEiλi
[(log µi − log µ̄) log µi] (77)

= Eλi
[Ei] · VarEiλi

(log µi) (78)

where the last line uses the fact that E [λi] = E
[

piyi
E[piyi]

]
= 1. We can then plug this back
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into our full expression, to obtain our desired expression:

L ≈ 1

2
Eλi

[Ei] · VarEiλi
(log µi) (79)

A.4 Proof of Proposition 3

Proof. Normalizing the price of the final good to one (P = 1), CES demand yields the

demand curve:

=⇒ pi = Y
1
θ y

−1
θ

i (80)

We can then solve for the firm’s optimal level of capital, using the distorted first order

condition and then plugging in demand and the firm production function:

FOC: log pi = log µi + log r − log
dyi
dki

(81)

Demand:
1

θ
log Y − 1

θ
log yi = log µi + log r − log

(
d log yi
d log ki

· yi
ki

)
(82)

= log µi + log r − logα− log yi + log ki (83)

= log µi + log r − logα− log yi +
1

α
(log yi − log zi) (84)

=⇒
(
1− α

α
+

1

θ

)
log yi =

1

α
log zi − log µi +

1

θ
log Y − log r + logα (85)

=⇒ log yi = E ·

 1

α
log zi − log µi +

1

θ
log Y − log r + logα︸ ︷︷ ︸

C

 (86)

where E :=
(
1−α
α

+ 1
θ

)−1
is the elasticity of output with respect to the wedge, and C is a

constant that will fall out.

Next, we need to solve for logZ := log Y − α logK. To do this, we can exploit the joint

lognormality of zi and µi. Since log zi and log µi are multivariate normal, and since log yi is

a linear function of log zi and log µi, we have that yi is jointly lognormal with zi and µi, and
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by extension so is ki (log ki = log yi − α log ki). We thus have

log Y =
θ

θ − 1
· logE

[
y

θ−1
θ

i

]
(87)

=
θ

θ − 1
·
(
θ − 1

θ
· E [log yi] +

(
θ − 1

θ

)2

· 1
2
Var (log yi)

)
(88)

= E [log yi] +

(
θ − 1

θ

)
· 1
2
Var (log yi) (89)

and similarly

logK := logE [ki] (90)

= logE

[(
yi
zi

) 1
α

]
(91)

=
1

α
E [log yi − log zi] +

1

2

1

α2
Var (log yi − log zi) (92)

=
1

α
E [log yi − log zi] +

1

2

1

2α2
Var (log yi)

+
1

2

1

α2
Var (log zi)−

1

α2
Cov (log yi, log zi) (93)

We now combine these two expressions to solve for logZ. We have:

logZ := log Y − α logK (94)

= E [log yi] +

(
θ − 1

θ

)
· 1
2
Var (log yi)

− E [log yi − log zi]−
1

2

1

α
Var (log yi)−

1

2

1

α
Var (log zi) +

1

α
Cov (log yi, log zi) (95)

= E [log zi]−
1

2

1

α
Var (log zi)

+
1

2
·
(
θ − 1

θ
− 1

α

)
Var (log yi) +

1

α
Cov (log yi, log zi) (96)

Solving just for 1
2
·
(
θ−1
θ

− 1
α

)
Var (log yi) +

1
α
Cov (log yi, log zi), and noting that

(
θ−1
θ

− 1
α

)
=
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−E−1,32 we have:

1

2
·
(
θ − 1

θ
− 1

α

)
Var (log yi)−

1

α
Cov (log yi, log zi)

= −1

2
· E−1Var

(
E ·
[
1

α
log zi − log µi

])
+

1

α
Cov

(
E ·
[
1

α
log zi − log µi

]
, log zi

)
(97)

= −1

2
· E
(

1

α2
Var (log zi) + Var (log µi)− 2 · 1

α
Cov (log zi, log µi)

)
+

1

α
E
(
1

α
Var (log zi)− Cov (log µi, log zi)

)
(98)

=
1

2
· E 1

α2
Var (log zi)−

1

2
· EVar (log µi) (99)

Plugging this back in, we obtain the formula:

logZ = E [log zi]−
1

2
· EVar (log µi) +

1

2
· E 1

α2
Var (log zi)−

1

2

1

α
Var (log zi) (100)

which is Equation 17 from the main text. From here, it is immediate that this is maximized

when the variance of the log wedges is zero. Thus, we have

logZ∗ − logZ =
1

2
· EVar (log µi) (101)

which completes the proof.

A.5 Proof of Proposition 4

Proof. As described in the main text, the assumption of a Cobb-Douglas production function

where αm,i = α̃m ·∑M αm,i, along with the assumption that wedges only appear as a revenue

tax, ensures that each firm will demand the same mix of inputs. In particular, we solving

the firm’s cost minimization problem yields the well-known result for cost shares under

Cobb-Douglas production:
rmxm∑
M rmxm

=
αm,i∑
M αm,i

= α̃m (102)

where rm denotes the cost of input m. Since all firms consume inputs in the same proportion,

it is straightforward for us to show how to reduce the problem to be equivalent to our single

input case. First, note that market clearing pins down the ratio of input prices to not depend

on the wedges
rmXm

rnXn

=
α̃m

α̃n

=⇒ rm
rn

=
α̃m

α̃n

Xn

Xm

∀m,n (103)

32To see this, observe that:
(
θ−1
θ − 1

α

)
= αθ−α−θ

αθ = −
(
θ−αθ+α

αθ

)
= −

(
1−α
α + 1

θ

)
= −E−1
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Since the ratio of input prices is pinned down by the (inelastic) aggregate supply of those

inputs (as well as by the production parameters α̃m and α̃n), it follows that relative input

prices will not change, and thus that input shares will also not change.

We can thus, without loss, reduce our firm’s production function to take a composite

input, with the shares pinned down as described above. We then have the composite pro-

duction function:

log yi = log zi +
∑
M

αm,i log xm,i

= log zi +

(∑
M

αm,i

)
log xi

where xi is a composite input defined such that xm,i ∝ xi.

Having defined our composite production function, the remainder of the proposition is

immediate from our previous results. The formula for misallocation is simply an application

of 2, while the formula for Ei is simply an application of our result in 3.

A.6 Proof of Proposition 5

Proof. The proposition has two components. The first is that Var (log µi) = Var (log VMPKi).

This is an immediate result of the efficient first-order condition in Equation 7, which implies

log VMPKi = log r + log µi

Since r is the same across firms by definition, this implies that the variance of log wedges

and log VMPK is the same. Note that this implicitly relies on the final good producer being

a price taker, so that pi = P · dY
dyi

; since VMPK is defined in terms of the observed price,

while the wedges are defined as distortions that lead to deviations from efficient solution to

the planner’s problem.

The second component is that Var (log VMPKi) = Var (logMRPKi). As discussed in the

text, under CES demand logMRPKi = logVMPKi + log θ−1
θ
. Thus, their variance is the

same.
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B Proofs for Section 4

B.1 Proof of Proposition 6

Proof. First, assume that γ0 ̸= 0 in which case we also have τ0 ̸= 0 so that G = ∇g(δ0)

is a non-zero vector for both of the null hypotheses considered in the lemma. From the

assumptions of the proposition we have

√
nΣ−1/2(δ̂ − δ0) = Z + op(1)

where Z ∼ N (0, 1). We can then show using standard methods, see for example Newey and

McFadden (1994), that

√
n(δ̂ − δ̄) = ΣG(G′ΣG)−1G′Σ1/2Z + op(1)

Since Σ̂
p→ Σ, it then follows that

T (δ̂, τ0) =
√
n(δ̂ − δ̄)Σ̂−1

√
n(δ̂ − δ̄)

= ZΣ1/2G(G′ΣG)−1G′Σ1/2Z + op(1)

d→ χ2(1),

where χ2(1) is a chi-squared distributed variable with one degree of freedom. Since we

simulate draws of the parameter vector from δ∗ ∼ N (δ̄, Σ̄), and Σ̄
p→ Σ, identical steps show

that √
n(δ∗ − δ̄∗) = ΣG(G′ΣG)−1G′Σ1/2Z + op(1)

where δ̄∗ is the constrained minimizer of T (δ∗, τ0), and hence the simulated test statistic

also converges in distribution to χ2(1). Let Fn(t) = P (T (δ∗, τ0) ≤ t) and F (t) = P (χ2(1) ≤
t). Then convergence in distribution implies that supt |Fn(t) − F (t)| → 0. An extended

continuous mapping theorem (e.g. 1.11.1 in van der Vaart and Wellner, 1996) then gives

Fn

(
T (δ̂, τ0)

) d→ F
(
χ2(1)

)
which is a uniform random variable.

For the case in which γ0 = 0 and hence τ0 = 0, then we must have that δ̄ = (β̄, 0). In

this case the test statistic T (δ̂, 0) is equivalent to a standard Wald test of the null hypothesis

H0 : γ = 0. Standard results give T (δ̂, 0)
d→ χ2(p). Similarly, the simulated test statistic is
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also simply

T (δ∗, 0) = γ∗(Σ̄γγ′)−1γ∗,

where Σ̄γγ′ is the block of the variance matrix corresponding to γ̂, and since γ∗ ∼ N (0, Σ̄γγ′)

we have that T (δ∗, 0) ∼ χ2(p) exactly.

B.2 Uniformly valid inference

Loosely speaking, a test is uniformly valid if it has correct asymptotic size under any sequence

of true models. Uniform procedures provide guarantees that the test will behave well at any

value of the true parameters. Here we show that the infeasible simulation based test that

simulates δ∗ from a normal distribution with mean δ0 is uniformly valid.

Let δ∗ ∼ N (δ0, Σ̂) be a simulated draw of the parameter vector δ, and Fδ0(t) = P
(
T (δ∗, τ0) ≤

t
)
be the corresponding CDF of the simulated test statistic. A p-value for the test statistic

(38) is given by p̂(δ0) = 1− Fδ0

(
T (δ̂, τ0)

)
. In practice, the CDF Fδ0 could be approximated

with arbitrary accuracy via simulation. We first demonstrate that under some straightfor-

ward conditions the p-value p̂(δ0) converges uniformly to a uniformly distributed variable.

Assumption 2. Let the data be drawn from some distribution indexed by the possibly infinite

dimensional parameter λ ∈ Λ. We assume that:

(i) Uniformly consistent variance estimator: Σ̂ is a uniformly consistent estimator of the

symmetric positive definite variance matrix Σ(λ), i.e.

sup
λ∈Λ

Pλ

(
∥Σ̂− Σ(λ)∥ > ε

)
→ 0,

where λmin(Σ(λ)) ≥ c > 0 for some constant c for all λ ∈ Λ.

(ii) Uniform convergence of parameter estimates:
√
n(δ̂ − δ0) converges uniformly in

distribution to Z(λ) ∼ N(0,Σ(λ)), i.e.

sup
λ∈Λ

dλBL

(√
n(δ̂ − δ0),Z(λ)

)
→ 0,

where dBL is the bounded Lipschitz metric (e.g. see Kasy, 2018).

Assumption 2 requires uniform consistency of the variance estimator Σ̂ along with uniform

convergence of the parameter estimate δ̂. This will hold in many standard settings; for the

instrumental variables estimators used in this paper, uniform convergence of the IV estimates

will require an assumption of strong identification.
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Lemma 2. Let Fδ0(t) = P
(
T (δ∗, g(δ0)) ≤ t

)
be the CDF of the statistic T (δ∗, τ0) for τ0 =

g(δ0), where δ∗ ∼ N (δ0, Σ̂/n). Define the p-value of the test statistic T (δ̂, τ0) as p̂(δ0) =

1 − Fδ0

(
T (δ̂, g(δ0))

)
. Then, under Assumption 2, p̂(δ0) converges uniformly in distribution

to a uniform random variable U

sup
λ∈Λ

dλBL

(
p̂(δ0),U

)
→ 0.

Proof. Consider the test statistic Sn(δ̂n, δ0) = T (δ̂, g(δ0))
1/2

Sn(δ̂n, δ0) = min
d:g(δ0+

1√
n
Σ̂1/2d)=0

√
(d− δ̂n)′(d− δ̂n),

where δ̂n =
√
nΣ̂−1/2(δ̂−δ0). We first show that the statistic Sn(δ, δ0) is Lipschitz continuous

in its first argument. Let

d̄ = arg min
d:g(δ0+

1√
n
Σ̂1/2d)=0

√
(d− δ)′(d− δ)

be the constrained minimizer associated with Sn(δ, δ0). Similarly, let d̃ be the constrained

minimizer corresponding to Sn(δ̃, δ0). Using the fact that d̃ is a minimizer, and applying the

triangle inequality, we find

Sn(δ̃, δ0) ≤
√

(d̄− δ̃)′(d̄− δ̃)

≤
√

(d̄− δ)′(d̄− δ) +

√
(δ − δ̃)′(δ − δ̃)

= Sn(δ, δ0) + ∥δ − δ̃∥

Similarly, we have Sn(δ, δ0) ≤ Sn(δ̃, δ0) + ∥δ − δ̃∥, and hence

|Sn(δ, δ0)− Sn(δ̃, δ0)| ≤ ∥δ − δ̃∥,

and hence Sn(δ, δ0) is Lipschitz continuous in its first argument. Since
√
n(δ̂− δ0) converges

uniformly in distribution to N(0,Σ) and the variance estimator is uniformly consistent, we

have that δ̂n =
√
nΣ̂−1/2(δ̂ − δ0) converges uniformly to Z ∼ N(0, I). We can then ap-

ply Theorem 1 of Kasy (2018) to find that Sn(δ̂n, δ0) converges uniformly in distribution

to Sn(Z, δ0).
33 Then, since the CDF Fδ(t) = P

(
Sn(Z, δ) ≤ t

)
is also a Lipschitz con-

33The theorem is stated for a fixed function ψ, while our function depends on the sample size n and the
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tinuous function we also have that Fδ0

(
Sn(δ̂n, δ0)

)
converges uniformly in distribution to

Fδ0

(
Sn(Z, δ0)

)
∼ U [0, 1]. Letting Gδ(t) = P

(
T (δ∗, g(δ)) ≤ t

)
= Fδ(

√
t) we have that

Fδ0

(
Sn(δ̂n, δ0)

)
= Gδ0

(
Tn(δ̂, g(δ0))

)
and so

p̂(δ0) = 1−Gδ0

(
Tn(δ̂, g(δ0))

)
converges uniformly to 1− Fδ0

(
Sn(Z, δ0)

)
∼ U [0, 1].

The test described in the paper, which replaces the unknown δ0 with an estimate δ̄, is

no longer uniformly valid. We now briefly describe a feasible and uniformly valid version of

the test. Let p̂τ0(δ) be the p-value associated with the test that simulates δ∗ from a normal

distribution with mean δ. The ‘worst case’ p-value is given by

p̃τ0 = sup
δ:g(δ)=τ0

p̂τ0(δ),

that is, the largest p-value over all parameter vectors δ that are consistent with the null

hypothesis. Construction of this p-value is feasible since it does not require knowledge of

the true δ0. Also, since p̃τ0 is no smaller than the p-value constructed using δ0, it is also

uniformly valid as shown in the following proposition.

Proposition 7. Let Assumption 2 hold and let p̂τ = supδ:g(δ)=τ p̂(δ) be the largest p-value

over all δ satisfying the null hypothesis. Then the confidence set

Ĉ1−α =
{
τ : p̂τ ≥ α

}
is uniformly valid, in the sense that

lim
n→∞

sup
λ∈Λ

Pλ

(
τ(λ) ∈ Ĉ1−α

)
≥ 1− α

Proof. Since p̂τ(λ) = supδ:g(δ)=τ p̂(δ) ≥ p̂(δλ), we have

Pλ

(
τ(λ) ∈ Ĉ1−α

)
= Pλ

(
p̂τ(λ) ≥ α

)
≥ Pλ

(
p̂(δλ) ≥ α

)
and hence

lim
n→∞

sup
λ∈Λ

Pλ

(
τ(λ) ∈ Ĉ1−α

)
≥ lim

n→∞
sup
λ∈Λ

Pλ

(
p̂(δλ) ≥ α

)
= 1− α

variance matrix Σ̂. Inspection of the proof indicates that the result may still be applied so long as the
Lipschitz constant is fixed, which is true in this case (since it is one).
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by the fact that p̂(δλ) converges uniformly to uniformly distributed variable, which is equiv-

alent to uniform convergence of its CDF at all continuity points (which includes the point α

since the uniform CDF is continuous on (0, 1)).

B.3 A feasible uniformly valid test

In practice searching over all δ satisfying the null hypothesis for the worst case critical values

is likely to be computationally demanding, particularly when the dimension of δ is not small.

In some settings it is possible to show that the distribution Fδ depends only on τ = g(δ) so

that valid critical values can be simulated using any δ satisfying the null hypothesis. This is

the case for example when g(·) is linear in δ, or when g(δ) = δ′δ and Σ = I. Andrews and

Mikusheva (2016) provide a procedure for generating critical values for the distance metric

statistic that is valid for any δ satisfying the null, although their method is conservative in

general.

In other cases it may be possible to identify the worst case choice of δ directly. In the case

that we are interested in a one-sided hypothesis on the parameter τ =
√
γ′γ, we conjecture

that the worst case value of γ is related the a particular eigenvector of the variance matrix

Σ.34

Conjecture 1. Let Σγ be the variance matrix associated with γ̂ , and let Σγ = V DV ′ be

its eigen-decomposition, where D = diag(d1, . . . , dp) is a diagonal matrix of eigenvalues in

decreasing order d1 ≥ d2 ≥ · · · ≥ dp and V is an orthonormal matrix of eigenvectors. The

worst case γ for testing the null hypothesis H0 :
√
γ′γ ≤ τ0 is given by

γworst = τ0vp (104)

where vp is the eigenvector associated with the smallest eigenvalue of Σγ.

Assuming the conjecture to be true, this would allow us to test the null hypothesis H0 :√
γ′γ ≤ τ0 by simulating draws γ∗

b ∼ N (γworst, Σ̂) computing the corresponding quantiles

of the test statistic. We could similarly construct a confidence set for τ =
√
γ′γ/β by

using a worst case value of δ = (β, γ). However, the worst case distribution is likely to be

particularly bad for values of β close to zero and so this method may be overly conservative.

Instead, we suggest constructing a joint confidence set for (β,
√
γ′γ) by testing the null

hypothesis H0 : β = β0,
√
γ′γ ≤ S0. Critical values for this joint null are then simulated

from δ = (β0, γworst). We can then use the projection method to construct a confidence set

for τ from this joint confidence set by finding the minimum value of τ0 = S0/β0 across all

34Although we are currently unable to prove the conjecture, we have verified it in a range of simulations.
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(β0, S0) that cannot be rejected. Although this uses the projection method, it does so only

for the two-dimensional parameter (β,
√
γ′γ), rather than the full parameter vector δ, and

so it much less conservative. The full procedure is summarized in the following algorithm.

Algorithm 2. A one-sided uniformly valid confidence set for τ =
√
γ′γ/β

1. Estimate the IV regression to obtain parameter estimates δ̂ = (β̂, γ̂′)′ and variance

matrix Σ̂

2. For the joint null hypothesis H0 : β = β0,
√
γ′γ ≤ S0:

(a) compute the worst-case γ value, γworst = S0vp as in (104), and constrained vari-

ance matrix Σ̄

(b) compute the test statistic

T (δ̂, S0, β0) = min
δ:
√
γ′γ=≤S,
β=β0

n(δ − δ̂)′Σ̄−1(δ − δ̂),

(c) for b = 1, . . . , B, simulate δb ∼ N(δworst, Σ̄), and compute the statistic

T ∗
b (δb, S0, β0) = min

δ:
√
γ′γ≤S0,
β=β0

n(δ − δb)
′Σ̄−1(δ − δb),

and set the critical value c1−α(S0, β0) as the (1− α)-quantile of T ∗
b (δb, S0, β0)

(d) reject H0 : β = β0,
√
γ′γ ≤ S0 if T (δ̂, τ0) > c1−α(τ0)

3. Repeat step 2 for a grid of (β0, S0) values to construct a joint confidence set for (β, S),

Ĉ1−α(β, S). Then compute a one-sided confidence set for τ = S/β as

Ĉ1−α =
(

min
(β,S)∈Ĉ1−α(β,S)

S

β
,∞
)
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Table 6: Accuracy of Second-Order Approximation: Simulation Results

Log-Normal Log-Uniform Two-Point Heterogeneous RTS

True Gains: Y ∗/Y -1 22% 18% 17% 26%

exp
(
1
2
Eλi

[E ] · Var (log µi)
)
− 1 22% 22% 22% 25%

exp
(
1
2
Eλi

[E ] · Varλi
(log µi)

)
− 1 22% 21% 20% 26%

exp
(
1
2
Eλi

[E ] · VarλiEi (log µi)
)
− 1 22% 21% 20% 26%

exp
(

1
2
Eλi

[E ] · log
(
1 + Var(µi)

E[µi]
2

))
− 1 22% 13% 10% 25%

Notes: This table compares the true benefits of reallocating capital to various approximate formula, under different simulations.
In all simulations, we assume that firms use a Cobb-Douglas production function: log yi = log zi + α log ki, face CES demand
with elasticity of substitution θ = 3, and that there is an aggregate capital constraint E [ki] = K̄. We also assume throughout
that log zi ∼ N

(
0, σ2

z

)
, where σz = 1.2. Following our preferred point estimates, we assume that the variance of log µi is 0.93.

We draw µ independently from z. In the first column, we simulate from a lognormal distribution for µi. In the second column,
we simulate log µi from a uniform distribution, log µi ∼ [−a, a], where a is selected such that the variance of log µi is 0.93. In
the third column, we simulate logµ from an equal-probability two-point distribution, logµi = {−σµ, σµ}, which again imposes
that the variance of logµi is 0.93. For the first three columns, we assume α = 1

3
. For the fourth column, we return to drawing

µi from a log-normal distribution, but we now draw heterogeneous αi, drawing αi =
{

1
6
, 1
3
, 1
2

}
with equal probability, and

drawing αi independently from (µ, z).
The first row shows the simulated welfare benefits from optimally reallocating capital across firms. The second row shows
a second-order approximation to these gains, using the unweighted variance of log wedges. The third row shows the same
approximation using the sales-weighted variance, and the fourth row shows the same approximation using the elasticity-times-

sales-weighted variance, as in Proposition 2. The fifth row shows the same formula using log
(
1 + Var (µi) /E [µi]

2
)
in place of

the variance of log µ, as discussed in Section 3.

Table 7: Estimates of Variance of MRPK: 95% Confidence Intervals
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Panel A: SD
(
E[MRPKi|Xi]

)
=

√
γ′γ

Estimate 0.066 0.063 0.109 0.107 0.098 0.131 0.128

95% CI [0.02, 0.13] [0.00, 0.12] [0.03,∞] [0.03,∞] [0.03,∞] [0.07,∞] [0.03,∞]

Panel B: SD
(
E[MRPKi|Xi]

)
/E[MRPKi] =

√
γ′γ/β

Estimate 0.913 0.840 1.415 1.275 1.234 1.247 1.213

95% CI [0.34, 2.08] [0.00, 2.30] [0.33,∞] [0.41, 4.72] [0.38,∞] [0.71,∞] [0.45,∞]

Notes: This table shows estimates of heterogeneous models of MRPK. All standard errors and confidence intervals are

clustered at the firm level. In Panel A, each column shows estimates from the heterogeneous model described in Equa-

tion 28. Each column uses the first K principal components of our vector of covariates. Panel A shows estimates of

SD (E [MRPKi | Xi]) =
√
γ′γ, as well as 95% confidence intervals computed using Algorithm 1. Panel B shows the implied

estimate of SD (E [MRPKi | Xi]) /E [MRPKi] =
√
γ′γ/β, as well as 95% confidence intervals computed using Algorithm 1.

Where the confidence intervals have an upper bound of infinity, this indicates that the largest null tested (2 for Panel A and 5

for Panel B) could not be rejected.
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Table 8: Estimates of Variance of MRPK: Uniformly Valid Confidence Intervals

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Panel A: SD
(
E[MRPKi|Xi]

)
=

√
γ′γ

Estimate 0.066 0.063 0.109 0.107 0.098 0.131 0.128

90% CI [0.03, 0.11] [0.02, 0.11] [0.03, 1.05] [0.04, 2.00] [0.03,∞] [0.06,∞] [0.03,∞]

Panel B: SD
(
E[MRPKi|Xi]

)
/E[MRPKi] =

√
γ′γ/β

Estimate 0.913 0.840 1.415 1.275 1.234 1.247 1.213

90% CI [0.21,∞] [0.00,∞] [0.21,∞] [0.39,∞] [0.39,∞] [0.67,∞] [0.44,∞]

Notes: This table shows estimates of heterogeneous models of MRPK, with uniformly valid confidence intervals based on

Algorithm 2. All confidence intervals are clustered at the firm level. Each column shows estimates from the heterogeneous

model described in Equation 28. Each column uses the first K principal components of our vector of covariates. Panel A shows

estimates of SD (E [MRPKi | Xi]) =
√
γ′γ, as well as 90% confidence intervals computed using Algorithm 2. Panel B shows the

implied estimate of SD (E [MRPKi | Xi]) /E [MRPKi] =
√
γ′γ/β, as well as 90% confidence intervals computed using Algorithm

2. Where the confidence intervals have an upper bound of infinity, this indicates that the largest null tested (2 for Panel A and

5 for Panel B) could not be rejected.

Table 9: Estimates of Variance of MRPK: Weighted Variance

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Panel A: E[MRPKi] = β

Estimate 0.069 0.053 0.020 0.019 0.047 0.084 0.095

SE (0.026) (0.042) (0.070) (0.083) (0.113) (0.104) (0.244)

Panel B: SD
(
E[MRPKi|Xi]

)
=

√
γ′γ

Estimate 0.060 0.070 0.139 0.123 0.109 0.130 0.121

90% CI [0.03, 0.11] [0.03, 0.15] [0.06,∞] [0.04,∞] [0.04,∞] [0.08,∞] [0.04,∞]

Panel C: SD
(
E[MRPKi|Xi]

)
/E[MRPKi] =

√
γ′γ/β

Estimate 0.866 1.335 7.045 6.550 2.315 1.551 1.272

90% CI [0.41, 1.73] [0.35,∞] [0.88,∞] [0.43, 3.97] [0.44,∞] [0.66,∞] [0.39,∞]

Notes: This table shows estimates of heterogeneous models of MRPK, using covariates that target the weighted variance

of returns. The weights are firm profits at baseline. All standard errors and confidence intervals are clustered at the firm

level. In Panel A, each column shows estimates from the heterogeneous model described in Equation 28. Each column

uses the first K principal components of our vector of covariates, with the principal components constructed based on the

weighted variance matrix, and standardized to ensure that the standardized factors have weighted mean zero and a weighted

variance of one. Panel A shows estimates of E [MRPKi] = β, along with standard errors. Panel B shows estimates of

SD (E [MRPKi | Xi]) =
√
γ′γ, as well as 90% confidence intervals computed using Algorithm 1. Panel C shows the im-

plied estimate of SD (E [MRPKi | Xi]) /E [MRPKi] =
√
γ′γ/β, as well as 90% confidence intervals computed using Algorithm

1. Where the confidence intervals have an upper bound of infinity, this indicates that the largest null tested (2 for Panel B and

5 for Panel C) could not be rejected.
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Table 10: Cobb-Douglas Estimates of MRPK
Panel A: Unconditional Estimates

E [MRPKi] SD (MRPKi) /E [MRPKi] SD (logMRPKi)
0.078 2.082 1.141

Covariate Capital Age Education Profit Hours APK log(APK)

Panel B: SD
(
E[MRPKi|Xi]

)
Estimate -0.044 +0.015 +0.029 -0.005 -0.023 +0.053 +0.060
90% CI [0.04, 0.05] [0.01, 0.02] [0.02, 0.04] [0.002, 0.01] [0.02, 0.03] [0.04, 0.06] [0.05, 0.07]

Panel C: SD
(
E[MRPKi|Xi]

)
/E[MRPKi]

Estimate 0.568 0.187 0.370 0.067 0.295 0.666 0.770
90% CI [0.53, 0.60] [0.12, 0.26] [0.30, 0.44] [0.02, 0.12] [0.25, 0.35] [0.56, 0.78] [0.71, 0.81]

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Panel D: SD
(
E[MRPKi|Xi]

)
Estimate 0.061 0.061 0.062 0.062 0.062 0.062 0.064
90% CI [0.05, 0.07] [0.05, 0.07] [0.05, 0.07] [0.06, 0.07] [0.06, 0.07] [0.06, 0.07] [0.06, 0.07]

Panel E: SD
(
E[MRPKi|Xi]

)
/E[MRPKi]

Estimate 0.784 0.790 0.794 0.799 0.800 0.802 0.821
90% CI [0.71, 0.83] [0.72, 0.84] [0.72, 0.84] [0.72, 0.85] [0.73, 0.85] [0.73, 0.86] [0.75, 0.88]

Notes: This table shows estimates of MRPK, under the assumption of Cobb-Douglas production and CES demand. In this

case we can compute MRPKi = α θ−1
θ

APKi. We calibrate α = 1
3
and θ = 3. All confidence intervals are clustered at the firm

level. We exclude MRPK estimates from the first wave, in order to maintain comparability with our IV estimates, which were

estimated using an instrument that only varies after the first wave. Panel A shows estimates from the unconditional distribution

of MRPK; the variance estimates are residualized on wave fixed effects. Panels B and C show estimates from a regression of the

MRPK on the covariate, with wave fixed effects, as described in Equation 39. Panels D and E shows estimates from Equation

39 using the first K standardized principal components as covariates. Panels B through E include confidence intervals based on

Algorithm 1. Where the confidence intervals have an upper bound of infinity, this indicates that the largest null tested (2 for

Panel B and 5 for Panel C) could not be rejected. Note that Panels C and E use a mean MRPK, E[MRPKi], that is computed

for the subset of firms with no missing covariates, and is thus slightly different from the E[MRPKi] in Panel A.
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Table 11: Estimates of Persistence of MRPK Differences by Baseline APK

(1) (2)

β 0.086

(0.029)

βFirst Year 0.104

(0.034)

βSecond Year 0.061

(0.032)

γFirst Year 0.133 0.127

(0.066) (0.067)

γSecond Year 0.142 0.115

(0.053) (0.061)

Notes: This table shows estimates from a heterogeneous model of MRPK, where we allow the heterogeneity in MRPK to vary
by year. Standard errors are clustered at the firm level. We estimate the model:

Profitit = βkit + γFirst YearXi × 1t≤5 × kit + γSecond YearXi × 1t>5 × kit + αi + δt + δX′
t Xi + εit

where Xi is APK measured at baseline and demeaned (this allows us to interpret β as E [MRPKi]), 1t≤5 is an indicator equal

to one in the first five waves, and 1t>5 is an indicator equal to one in the last four waves. Capital and its interaction effects

are instrumented for using the grant amount, Zit, and the corresponding interactions. Each column shows estimates from the

model described above: the first column shows estimates that assume a common average MRPK for both years, while the

second column shows estimates that allow the average MRPK to be different in the first year and second year.

Table 12: Estimates of Variance of MRPK: Carrillo et al. (2023) Method

(1) (2) (3)

E [MRPKi] 0.131 0.129 0.127

(0.044) (0.046) (0.041)

E
[
(MRPKi)

2] 0.110 0.241 0.209

(0.236) (0.292) (0.249)

Var (MRPKi) 0.093 0.224 0.193

(0.234) (0.290) (0.245)

Controls:

E [Amountit | t] Yes Yes —

E
[
(Amountit)

2 | t
]

No Yes —

Wave Fixed Effects No No Yes

Notes: This table shows estimates of the mean and variance of MRPK, using the approach proposed in Carrillo et al. (2023),

based on the IV-CRC model studied in Masten and Torgovitsky (2016). Standard errors are based on a firm-clustered bootstrap

with 100 bootstrap draws. The first column controls for the expected value of the instrument (amount of grant) in that wave.

The second column add in a control for the expected value of the instrument squared in that wave, while the third column

controls for wave fixed effects.
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Table 13: Parametric Estimates of Returns to Scale
(1) (2) (3) (4)

β 0.381 1.050 0.290 0.438

(0.122) (0.311) (0.293) (0.471)

Weighted No No Yes Yes

Notes: This table shows estimates of returns to scale based on loglinear models. Standard errors are clustered at the firm level.
In the first and third columns, we estimate the model:

log Profitit = β log kit + αi + δt + εit

while in the second and fourth columns, we estimate the model:

log Profitit = β ·
(
1

3
log kit +

2

3
log lit

)
+ αi + δt + εit

where kit is capital and lit is total hours worked at the firm in the past week, summing up the hours of the owner, their family

members, and any other workers. In either model, we use the grant amount, Zit, as an instrument for the endogenous variable.

The first and second columns are unweighted, while the third and fourth columns use the firms profits at baseline as weights.
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